![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:23 、訪客IP:3.134.92.188
姓名 劉懿萱(Yi-Hsuan Liu) 查詢紙本館藏 畢業系所 統計研究所 論文名稱 個數資料於R(個序列 )與C個 (時間點 )的交叉設計下之強韌概似推論法
(Robust Likelihood inferences for RxC crossover designs for general count data)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 (2026-12-31以後開放)
摘要(中) 交叉試驗設計(crossover design)於慢性疾病的臨床試驗已越來越常見,近年在R個序列與C個時間點的交叉試驗設計下於個數型資料的研究多假設資料源於卜瓦松分配(poisson distribution)進行統計推論,然而,在未知個數型資料真實的分配或相關性時,若以卜瓦松分配作為模型假設很可能得到不合適或不正確的結果。
本文利用強韌化的獨立卜瓦松實作概似函數,分析R個序列與C個時間點的交叉試驗設計下的個數型資料,以模擬研究與實例分析呈現強韌華德檢定統計量 (robust wald statistics)、強韌分數檢定統計量 (robust score statistics)、強韌概似比檢定統計量 (robust likelihood ratio statistics),在未知資料真實分配為何的狀況下,仍可得到正確的統計推論。
關鍵字:交叉設計、強韌概似函數、相關性個數型資料摘要(英) Crossover design has been often employed to study the effect of a treatment on chronic diseases, most research proposed parametric methods to analyze correlated count data under R-sequence and C-period crossover design based on Poisson distribution recently, however, the conclusions may collapse when we can’t specify the true underlying distributions.
Hence, we provide a parametric method through the adjusted profile likelihood function to make Poisson likelihood robust. The corrected Poisson likelihood function can deliver legitimate likelihood inferences for parameters we are interested in. We demonstrate the simulation result that we can make statistical inferences correctly even though we use a misspecified model and use real data analysis to compare the robust Wald test statistic and robust score test statistic at the end.
Keywords: Crossover design, Robust likelihood function, Correlated count data關鍵字(中) ★ 交叉設計
★ 強韌概似函數
★ 相關性個數型資料關鍵字(英) ★ Crossover design
★ Robust likelihood function
★ Correlated count data論文目次 第一章 緒論..........................................................................................................1
第二章 文獻回顧..................................................................................................3
2.1 強韌概似函數..........................................................................................3
2.2 簡單交叉試驗設計的個數型資料分析..................................................5
第三章 AB|BA 交叉設計強韌卜瓦松概似函數.................................................7
3.1 獨立卜瓦松模型之強韌化......................................................................7
3.2 獨立卜瓦松概似函數之修正項與強韌檢定統計量............................12
第四章 ABB|BAA 交叉設計強韌卜瓦松概似函數.........................................15
4.1 獨立卜瓦松模型之強韌化....................................................................16
4.2 獨立卜瓦松概似函數之修正項與強韌檢定統計量............................19
第五章 AAB|ABA|BAA 交叉設計強韌卜瓦松概似函數................................22
5.1 獨立卜瓦松模型之強韌化....................................................................23
5.2 獨立卜瓦松概似函數之修正項與強韌檢定統計量............................28
第六章 ABC|BCA|CAB 交叉設計強韌卜瓦松概似函數 ................................31
6.1 獨立卜瓦松模型之強韌化....................................................................32
6.2 獨立卜瓦松概似函數之修正項與檢定統計量....................................38
第七章 BAC|ACB|BCA 交叉設計強韌卜瓦松概似函數 ................................45
7.1 獨立卜瓦松模型之強韌化....................................................................45
7.2 獨立卜瓦松概似函數之修正項與檢定統計量....................................50
第八章 BBA|ACB|CAC 交叉設計強韌卜瓦松概似函數 ................................57
8.1 獨立卜瓦松模型之強韌化....................................................................57
8.2 獨立卜瓦松概似函數之修正項與檢定統計量....................................62
第九章 模擬研究................................................................................................69
9.1 獨立與相關性資料的生成方式............................................................69
IV
9.1.1 獨立與相關性卜瓦松個數資料.................................................69
9.1.2 獨立與相關性卜瓦松個數資料.................................................69
9.2 模擬結果................................................................................................70
9.3 AB|BA 交叉設計下相關性資料的有效性比較.................................155
第十章 實例分析..............................................................................................160
10.1 實例一:ABBA ................................................................................160
10.2 實例二:ABB|BAA..........................................................................161
10.3 實例分析 ABC|BCA|CAB ................................................................163
第十一章 結論..................................................................................................165
參考文獻............................................................................................................166
附錄一:ABB|BAA 推導過程.........................................................................168
附錄二:AAB|ABA|BAA 推導過程................................................................174
附錄三:ABC|BCA|CAB 推導過程 ................................................................182
附錄四:BAC|ACB|BCA 推導過程 ................................................................192
附錄五:BBA|ACB|CAC 推導過程 ................................................................202參考文獻 [1] Royall, R. M. and Tsou, T. S. (2003). Interpreting statistical evidence by using
imperfect models: robust adjusted likelihood functions. Journal of the Royal
Statistical Society, Series B, 65: 391-404.
[2] Tsou, T. S. (2011). Robust likelihood inference for multivariate correlated count data. Springer-Verlag Berlin Heidelberg, 38, : 2901-2910.
[3] Constantine, A. G., Robinson, N. I. (1997). The Weibull Renewal Function for Moderate To Large Arguments. Computat. Statist. Data Anal. 24: 9–27.
[4] S. H. Ong, Atanu Biswas, S. Peitis, and Y. C. Low(2015). Count Distribution for Generalized Weibull Duration with Applications. Communications in Statistics—Theory and Methods, 44: 4203–4216.
[5] Lui, K. J., & Chang, K. C. (2012). Analysis of Poisson frequency data under a simple crossover trial. Statistical Methods in Medical Research, 25: 385–399.
[6] Lui, K. J., & Chang, K. C. (2014). Notes on testing equality
and interval estimation in Poisson frequency data under a three-treatment three-period
crossover trial. Statistical Methods in Medical Research, 25: 2161-2179.
[7] Sushil, A. Kale, & Dr. V. H. Bajaj. (1995). Application of Statistics in 2x2 Crossover Bioequivalence Studies. International Journal of Research Studies in Biosciences, 3: 54-60.
[8] J. N. S. MATTHEWS. (1989). Estimating dispersion parameters in the analysis of data from crossover trials. Biometrika, 76: 239-44
[9] A. F. Ebbutt. (1984)Three-Period Crossover Designs for Two Treatments. Biometrika, 40: 219-224.
[10] Bellavance, F., & Tardif, S. (1995). A nonparametric approach to the analysis of three treatment three-period crossover designs. Biometrika, 82: 865-875.
[11] Yi-chun Hou (2014). A universal parametric robust approach for analyzing count data from cross over designs.指導教授 鄒宗山(Tsung-Shan Tsou) 審核日期 2023-7-8 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare