博碩士論文 110225003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.133.141.1
姓名 余岱錡(Tai-Chi Yu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 利用半母數模型分析三臂非劣性試驗
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究
★ Cox 比例風險假設之探討與擴充風險模型之應用★ 以聯合模型探討原發性膽汁性肝硬化
★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究
★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 本篇的研究目的為在三臂非劣性試驗下,計算三組治療組不同比例的樣本數,探討在何種比例下有最佳樣本數,以及最佳樣本數的檢定力是否有達到我們所設定的目標。三臂非劣性試驗包含實驗組、對照組和安慰劑組,也稱為黃金標準試驗,用於右設限資料,其中考慮到行政設限和失去追蹤設限,將資料應用在不同的半母數模型進行模擬,本研究採用的半母數模型包括Cox迴歸模型、AFT模型和PO模型(Proportional Odds Model)在相同條件下做比較。我們以三組治療組來當作共變異數,使用模型來估計迴歸係數,得以了解治療組之間的藥效差異,再利用大樣本的分佈計算樣本數與檢定力。最後,我們將發展的方法運用在膀胱癌復發的研究上。
摘要(英) The purpose of this study is to calculate the sample sizes for different allocation to three treatment groups in a three-arm non-inferiority trial. The aim is to determine the optimal sample size for each allocation and assess whether the achieved power meets our predefined target. The three-arm non-inferiority trial consists of an experimental group, a control group, and a placebo group, also known as a gold standard trial. It is designed for right-censored survival data, considering administrative censoring and lost to follow-up. The semiparametric models employed in this study include the Cox proportional hazards model, the accelerated failure time model, and the proportional odds model, which are compared under the same conditions. The three treatment groups are treated as covariates, and the models are used to estimate the coefficients, providing insights into the differences in treatment effects among the groups. The sample sizes and desired power are calculated based on the distribution of a large sample. Finally, the developed methodology is applied to a study on bladder cancer recurrence.
關鍵字(中) ★ 三臂非劣性試驗
★ Proportional Odds模型
★ 半參數
★ 最佳樣本數
關鍵字(英) ★ optimal sample size
★ proportional odds model
★ semiparametric
★ three-arm non-inferiority trial
論文目次 第1章 緒論 1
第2章 研究方法 14
第3章 模擬研究 23
第4章 資料分析 40
第5章 結論與討論 48
參考文獻 Byar, D. P. and Blackard, C. (1977). Comparisons of placebo, pyridoxine, and topical thiotepa in preventing recurrence of stage I bladder cancer. Urology. 10, 556-561.
Chiou, S. H., Kang, S. and Yan, J. (2014). Fitting Accelerated Failure Time Models in Routine Survival Analysis with R Package aftgee. Journal of Statistical Software. 61, 1-23.
Conn, A. R., Scheinberg, K. and Vicente, L. N. (2009). Introduction to Derivative-Free Optimization, MPS-SIAM series on Optimization. Society for Industrial and Applied Mathematics(SIAM), Philadelphia.
Cook, T. D. and DeMets, D. L. (2008). Introduction to Statistical Methods for Clinical Trials. Boca Raton:Chapman & Hall/CRC.
Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B (Methodological). 34, 187-220.
FDA (1998). E9 Statistical Principles for Clinical Trials. Food and Drug Administration.
FDA (2001). E10 Choice of Control Group and Related Issues in Clinical Trials. Food and Drug Administration.
Hasler, M., Vonk, R. and Hothorn, L. A. (2008). Assessing non-inferiority of a new treatment in a three-arm trial in the presence of heteroscedasticity. Statistics in Medicine. 27, 490-503.
Hauschke, D. and Pigeot, I. (2005). Establishing Efficacy of a New Experimental Treatment in the ‘Gold Standard’ Design. Biometrical Journal. 47, 782-786.
John, P. and Melvin, L. (2003). Survival Analysis: Techniques for Censored and Truncated Data, 2nd ed. New York:Springer-Verlag.
Karola, K., Axel, M. and Tim, F. (2013). Design and semiparametric analysis of non-inferiority trials with active and placebo control for censored time-to-event data. Statistics in Medicine. 32, 3055-3066.
Kieser, M. and Friede, T. (2007). Planning and analysis of three-arm non-inferiority trials with binary endpoints. Statistics in Medicine. 26, 253-273.
Lange, S. and Freitag, G. (2005). Choice of delta: requirements and reality--results of a systematic review. Biometrical Journal. 47, 12-27.
Martinussen, T. and Scheike, T. H. (2006). Dynamic Regression Models for Survival Data, New York:Springer.
Pigeot, I., Schäfer, J., Röhmel, J. and Hauschke, D. (2003). Assessing non-inferiority of a new treatment in a three-arm clinical trial including a placebo. Statistics in Medicine. 22, 883-899.
Schacht, A., Mielke, M. and Munk, A. (2008). The assessment of non-inferiority in a gold standard design with censored, exponentially distributed endpoints. Statistics in Medicine. 27, 5093-5110.
Wei, L. J., Lin, D. Y. and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. Journal of the American Statistical Association. 84, 1065-1073.
王家芸 (2019)。 Statistical Design for Three-Arm Bioequivalence
and Non-Inferiority Confirmatory Clinical Trials
Using Binary Outcome as Primary Endpoint. 國立中央大學統計研究所碩士論文
林威廷 (2021)。 風險回歸模型下時間相依 ROC 曲線。 國立中央大學統計研究所碩士論文。
吳雅琪 (2012)。 不劣性試驗統計審查重點。 當代醫藥法規第二十二期。
康楹婕 (2022)。 利用半母數模型計算三臂非劣性試驗的樣本數。 國立中央大學統計研究所碩士論文。
衛生福利部豐原醫院認識膀胱癌 (2018)。 https://www.fyh.mohw.gov.tw/?aid=59&pid=74&page\_name=detail&iid=43
衛生福利部南投醫院認識膀胱癌 (2020)。 https://www.nant.mohw.gov.tw/?aid=509&pid=56&page\_name=detail&iid=511
指導教授 曾議寬(Yi-Kuan Tseng) 審核日期 2023-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明