參考文獻 |
[1] Akaike, H. (1974). A new look at the statistical model identification, IEEE Trans-
actions on Automatic Control, 19, 716-723.
[2] Andrieu, C., De Freitas, N., and Doucet, A. (1999). Sequential MCMC for Bayesian
model selection, Proceedings of the IEEE Signal Processing Workshop on Higher-
Order Statistics. SPW-HOS ’99, 130-134.
[3] Bae, S. J. and Kvam, P. H. (2004). A nonlinear random-coefficients model for
degradation testing, Technometrics, 46, 460-469.
[4] Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis (Second
Edition), Springer-Verlag, New York.
[5] Carlin, B. P. and Louis, T. A. (2008). Bayesian Methods for Data Analysis, Chap-
man and Hall, London.
[6] Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006). Deviance
information criteria for missing data models, Bayesian Analysis, 1, 651-673.
[5] Duan, F. and Wang, G. (2018). Optimal step-stress accelerated degradation test
plans for inverse Gaussian process based on proportional degradation rate model.
Journal of Statistical Computation and Simulation, 88, 305-328.
[7] Fan, T. H. and Chen, C. H. (2017). A Bayesian predictive analysis of step-stress
accelerated tests in gamma degradation-based processes, Quality and Reliability
Engineering International, 33, 1417-1424.
[8] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D.
B. (2013). Bayesian Data Analysis (Third Edition), Chapman and Hall, Londo
[9] Gelman, A., Meng, X. L., and Stern, H. (1996). Posterior predictive assessment of
model fitness via realized discrepancies, Statistica Sinica, 6, 733-807.
[10] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6, 721-741.
[11] Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M., Leslie,
D. S., Forster, J. J., Wagenmakers, E. J., and Steingroever, H. (2017). A tutorial
on bridge sampling. Journal of Mathematical Psychology, 81, 80-97.
[12] Jefferys, W. H. and Berger, J. O. (1991). Sharpening Occam’s Razor on a Bayesian
strop, In Bulletin of the American Astronomical Society, 23, 1259.
[13] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and
their applications, Biometrika, 57, 97-109.
[14] Lawless, J. and Crowder, M. (2004). Covariates and random effects in a gamma
process model with application to degradation and failure, Lifetime Data Analysis,
10, 213-227.
[15] Meeker, W. Q. and Escobar, L. A. (1998). Statistical Methods for Reliability Data,
John Wiley and Sons, New York.
[16] Meeker, W. Q., Escobar, L. A., and Pascual, F. G. (2022). Statistical Methods for
Reliability Data (Second Edition), John Wiley and Sons, New York.
[17] Meeker, W. Q., Escobar, L. A., and Lu, C. J. (1998). Accelerated degradation tests:
modeling and analysis, Technometrics, 40, 89-99.
[18] Meng, X. L. (1994). Posterior predictive p-values, The Annals of Statistics, 22,
1142-1160.
[19] Meng, X. L. and Schilling, S. (2002). Warp bridge sampling, Journal of Computa-
tional and Graphical Statistics, 11, 552-586.
[20] Meng, X. L. and Wong, W, H. (1996). Simulating ratios of normalizing constants
via a simple identity: a theoretical exploration. Statistica Sinica, 6, 831-860
[21] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equation of state calculations by fast computing machines, The Journal of
Chemical Physics, 21, 1087-1092.
[22] Miazhynskaia, T. and Dorffner, G. (2006). A comparison of Bayesian model selec-
tion based on MCMC with an application to GARCH-type models, Statistical Papers,
47, 525-549.
[23] Nelson, W. (1980). Accelerated life testing step-stress models and data analyses,
IEEE transactions on reliability, 29, 103-108.
[24] Nelson, W. B. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data
Analysis, John Wiley and Sons, New York.
[25] Ntzoufras, I. (1985). Bayesian Modeling Using WinBUGS, John Wiley and Sons,
New York.
[26] Peng, C. Y. (2015). Inverse Gaussian processes with random effects and explanatory
variables for degradation data, Technometrics, 57, 100-111.
[27] Peng, C. Y. and Tseng, S. T. (2009). Mis-Specification analysis of linear degradation
models, IEEE Transactions on Reliability, 58, 444-455.
[28] Peng, W., Li, Y. F., Yang, Y. J., Huang, H. Z., and Zuo, M. J. (2014). Inverse
Gaussian process models for degradation analysis: A Bayesian perspective, Relia-
bility Engineering & System Safety, 130, 175-189.
[29] Pieruschka, E. (1961). Relation between lifetime distribution and the stress level
causing the failures, LMSD-800440, Lockhead Missiles and Space Division, Sunny-
vale.
[30] Qin, H., Zhang, S. and Zhou, W. (2013). Inverse Gaussian process-based corrosion
growth modeling and its application in the reliability analysis for energy pipelines,
Frontiers of Structural and Civil Engineering, 7, 276-287.
[31] Rodr ́ıguez-Narciso, S. and Christen, J. A. (2016). Optimal sequential Bayesian
analysis for degradation tests. Lifetime Data Analysis, 22, 405-428.
[32] Ross, S. M. (2022). Simulation (Sixth Edition), Elsevier, New Yor
[33] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002).
Bayesian measures of model complexity and fit, Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 64, 583-639.
[34] Vacar, C., Giovannelli, J. F., and Roman, A. M. (2012). Bayesian texture model
selection by harmonic mean, 2012 19th IEEE International Conference on Image
Processing, 2533-2536.
[35] Wang, L., Jones, D. E., and Meng, X. L. (2016). Warp bridge sampling: The next
generation, arXiv preprint arXiv: 1609.07690
[36] Wang, H., Teng, K., and Zhou, Y. (2018). Design an optimal accelerated-stress
reliability acceptance test plan based on acceleration factor, IEEE Transactions on
Reliability, 67, 1008-1018.
[37] Wang, H and Xi, W. (2016). Acceleration factor constant principle and the applica-
tion under ADT. Quality and Reliability Engineering International, 32, 2591-2600.
[38] Wang, X. and Xu, D. (2010). An inverse Gaussian process model for degradation
data, Technometrics, 52, 188-197.
[39] Whitmore, G. A. (1995). Estimating degradation by a Wiener diffusion process
subject to measurement error, Lifetime Data Analysis, 1, 307-319.
[40] Ye, Z. S. and Chen, N. (2014). The inverse Gaussian process as a degradation
model, Technometrics, 56, 302-311.
[41] Yuan, R., Tang, M., Wang, H., and Li, H. (2019). A reliability analysis method of
accelerated performance degradation based on Bayesian strategy, IEEE Access, 7,
169047-169054.
[42] 古立丞 (2021) 逆高斯過程之完整貝氏衰變分析,國立中央大學碩士論文。
[43] 張孟筑 (2017) 應用累積暴露模式至單調過程之加速衰變模型,國立中央大學碩士
論文。
[44] 董奕賢 (2019) 累積暴露模式之單調加速衰變試驗,國立中央大學碩士論文。 |