參考文獻 |
[1] Y. Zhang, A. Liu, P. Li and S. Jiang, “Deep Learning (DL)-Based Channel Prediction and Hybrid Beamforming for LEO Satellite Massive MIMO System, ” IEEE Internet Things J., vol. 9, no. 23, pp. 23705-23715, Dec. 2022.
[2] M. Giordani and M. Zorzi, “Non-terrestrial Networks in the 6G Era: Challenges and Opportunities,” IEEE Network, vol. 35, no. 2, pp. 244-251, Mar. 2021.
[3] Z. Lin, M. Lin, J. Ouyang, W.-P. Zhu, A. D. Panagopoulos, and M.-S. Alouini, “Robust Secure Beamforming for Multibeam Satellite Communication Systems,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 6202-6206, Jun. 2019.
[4] S. Chen, S. Sun, G. Xu, X. Su, and Y. Cai, “Beam-Space Multiplexing: Practice, Theory, and Trends, From 4G TD-LTE, 5G, to 6G and Beyond,” IEEE Trans. Wireless Commun., vol. 27, no. 2, pp. 162-172, Apr. 2020.
[5] F. Fourati and M. -S. Alouini, “Artificial intelligence for satellite communication: A review,” Intelligent and Converged Networks, vol. 2, no. 3, pp. 213-243, Sep. 2021.
[6] N. Chand, P. Mishra, C. R. Krishna, E. S. Pilli, and M. C. Govil, “A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection,” in Proc. IEEE ICACCA, pp. 1-6, 2016.
[7] K. Y. Huang, L. C. Shen, K. J. Chen, and M. C. Huang, “Multilayer perceptron with genetic algorithm for well log data inversion,” in Proc. IEEE IGARSS, pp. 1544-1547, 2013.
[8] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image classification,” in Proc. IEEE CVPR, pp. 3642-3649, 2012.
[9] Y. Li, “Deep reinforcement learning: an overview,” arXiv:1701.07274, 2017.
[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444, May 2015.
[11] M. Shinzaki, Y. Koda, K. Yamamoto, T. Nishio, M. Morikura, C.-H. Huang, Y. Shirato, and N. Kita, “Deep Reinforcement Learning-based Beam Tracking from mmWave Antennas Installed on Overhead Messenger Wires,” in Proc. IEEE VTC2020-Fall, pp. 1-6, 2020.
[12] S. Kim, G. Kwon, and H. Park, “Q-Learning-Based Low Complexity Beam Tracking for
mmWave Beamforming System,” in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC)., pp. 1451-1455, Oct. 2020.
[13] D. C. Araújo and A. L. F. de Almeida, “Beam Management Solution Using Q-Learning Framework,” in Proc. IEEE CAMSAP, pp. 594-598, 2019.
[14] H.-Chiang, K. -C. Chen, W. Rave, M. K. Marandi, and G. Fettweis, “Multi-UAV mmWave
Beam Tracking using Q-Learning and Interference Mitigation,” in Proc. IEEE ICC Workshops, pp. 1-7, 2020.
[15] K. Ma, D. He, H. Sun, Z. Wang and S. Chen, “Deep Learning Assisted Calibrated Beam Training for Millimeter-Wave Communication Systems,” IEEE Trans. Commun., vol. 69, no. 10, pp. 6706-6721, Oct. 2021.
[16] S. H. Lim, S. Kim, B. Shim and J. W. Choi, “Deep Learning-Based Beam Tracking for Millimeter-Wave Communications Under Mobility,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7458-7469, Nov. 2021.
[17] J. Park, S. Hwang, H. Lee and I. Lee, “Deep Recurrent Q-Network Methods for mmWave Beam Tracking systems,” IEEE Trans. Veh. Technol., vol. 71, no. 12, pp. 13429-13434, Dec. 2022.
[18] H. -L. Chiang, K. -C. Chen, W. Rave, M. Khalili Marandi and G. Fettweis, “Machine-Learning Beam Tracking and Weight Optimization for mmWave Multi-UAV Links, ” IEEE Trans. Wireless Commun., vol. 20, no. 8, pp. 5481-5494, Aug. 2021.
[19] J. Liu, X. Li, T. Fan, S. Lv and M. Shi, “Model-Driven Deep Learning Assisted Beam Tracking for Millimeter-Wave Systems,” IEEE Commun. Lett., vol. 26, no. 10, pp. 2345-2349, Oct. 2022.
[20] H. -S. Ahn, O. Jung, S. Choi, J. -H. Son, D. Chung and G. Kim, “An Optimal Satellite Antenna Profile Using Reinforcement Learning,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 41, no. 3, pp. 393-406, May 2011.
[21] S. Chan, H. Lee, S. Kim and D. Oh, “Intelligent Low Complexity Resource Allocation Method for Integrated Satellite-Terrestrial Systems,” IEEE Commun. Lett., vol. 11, no. 5, pp. 1087-1091, May 2022.
[22] H. Tsuchida et al., “Efficient Power Control for Satellite-Borne Batteries Using Q-Learning in Low-Earth-Orbit Satellite Constellations,” IEEE Commun. Lett., vol. 9, no. 6, pp. 809-812, Jun. 2020.
[23] J. Huang, Y. Yang, L. Yin, D. He and Q. Yan, “Deep Reinforcement Learning-Based Power Allocation for Rate-Splitting Multiple Access in 6G LEO Satellite Communication System,” IEEE Commun. Lett., vol. 11, no. 10, pp. 2185-2189, Oct. 2022.
[24] X. Liu, H. Zhang, K. Long, A. Nallanathan and V. C. M. Leung, “Deep Dyna-Reinforcement Learning Based on Random Access Control in LEO Satellite IoT Networks,” IEEE Internet Things J., vol. 9, no. 16, pp. 14818-14828, Aug. 2022.
[25] D. Zhou, M. Sheng, Y. Wang, J. Li and Z. Han, “Machine Learning-Based Resource Allocation in Satellite Networks Supporting Internet of Remote Things,” IEEE Trans. Wireless Commun., vol. 20, no. 10, pp. 6606-6621, Oct. 2021.
[26] J. Yun, T. An, H. Jo, B. -J. Ku, D. Oh and C. Joo, “Dynamic Downlink Interference Management in LEO Satellite Networks Without Direct Communications,” IEEE Access, vol. 11, pp. 24137-24148, 2023.
[27] C. Jiang and X. Zhu, “Reinforcement Learning Based Capacity Management in Multi-Layer Satellite Networks,” IEEE Trans. Wireless Commun. vol. 19, no. 7, pp. 4685-4699, Jul. 2020.
[28] J. Zhao, F. Gao, Q. Wu, S. Jin, Y. Wu, and W. Jia, “Beam Tracking for UAV Mounted SatCom on-the-Move with Massive Antenna Array,” IEEE J. Sel. Areas Commun., vol. 36, no. 2, pp. 363-375, Feb. 2018.
[29] D. Cote, “Using machine learning in communication networks [Invited],” J. Opt. Commun. Netw., vol. 10, no. 10, pp. 400-409, Oct. 2018.
[30] Sutton, R.S., Barto, A.G. “Reinforcement Learning: An Introduction,” MIT Press, 1998.
[31] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
[32] Z. Lin, M. Lin, J. Wang, T. de Cola, and J. Wang, “Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks with Non-Orthogonal Multiple Access,” IEEE J. Sel. Topics Signal Process., vol. 13, no. 3, pp. 657-670, Jun. 2019.
[33] J. Wang, L. Wang and M. Xu, “Rain Attenuation Analysis of Ka Band Ship-borne Satellite Communication Station In Indian Ocean and Pacific Ocean,” 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, pp. 385-388, 2020.
[34] S. Xia, Q. Jiang, C. Zou, and G. Li, “Beam Coverage Comparison of LEO Satellite Systems Based on User Diversification,” IEEE Access, Vol.7, pp. 181656-181667, Dec. 2019.
[35] H. -L. Chiang, K. -C. Chen, W. Rave, et al., “Machine-learning beam tracking and weight optimization for mmWave multi-UAV links,” IEEE Trans. Wireless Commun., vol.20, no.8, pp.5481–5494, 2021.
[36] M. Á. Vázquez, M. R. B. Shankar, C. I. Kourogiorgas, P.-D. Arapoglou, V. Icolari, and S. Chatzinotas, “Precoding, Scheduling, and Link Adaptation in Mobile Interactive Multibeam Satellite Systems,” IEEE J. Sel. Areas Commun., vol. 36, no. 5, pp. 971-980, May 2018.
[37] A. E. Alchalabi, S. Shirmohammadi, S. Mohammed, S. Stoian and K. Vijayasuganthan, “Fair Server Selection in Edge Computing With Q-Value-Normalized Action-Suppressed Quadruple Q-Learning,” IEEE Trans. AI, vol. 2, no. 6, pp. 519-527, Dec. 2021.
[38] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” arXiv: 1502.01852v1, pp. 1-11, Feb. 2015.
[39] S. Ioffe, and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv: 1502.03167v3, pp. 1-11, Mar. 2015.
[40] D. Mishkin, and J. Matas, “All you need is a good init,” arXiv: 1511.06422v7, pp. 1-13, Feb. 2016.
[41] Andrej Karpathy’s blog, “Hacker’s guide to Neural Networks,” [Online]. Available: http://karpathy.github.io/neuralnets/.
[42] Frederik Kratzert’s blog, “Understanding the backward pass through Batch NormalizationLayer,”[Online].Available:http://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html.
[43] D. P. Kingma, and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv: 1412.6980v9, pp. 1-15, Jan. 2017.
[44] M. Abadi, A. Agarwal, and et al. “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv:1603.04467v2, pp. 1-19, Mar. 2016. |