博碩士論文 107383008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.147.52.53
姓名 Yi-rong Chen(Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 預混紊流氨氣/空氣燃燒: 從引燃到火焰整體熄滅
(Premixed Turbulent Ammonia/Air Combustion: From Ignition to Flame Global Quench)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-5-1以後開放)
摘要(中) 本論文使用十字型風扇擾動紊流燃燒設備,搭配可精確控制放電能量的高壓電極火花引燃系統,量測預混氨氣/空氣燃料在層紊流下的最小引燃能量(Minimum Ignition Energy, MIE)與火焰整體熄滅極限。十字型燃燒設備在水平方向配有兩對卧且相反方向轉動的10馬力風扇與一對空孔板,可在設備中心處產生一等向性紊流場,且方均根紊流擾動速度(u′)可控制在0 ~ 7.2 m/s。在垂直方向有上下對稱兩圓管,引燃藉由一對電極探針在設備中心處或在垂直上下管頂端處引燃,可分別產生中心引燃、向上與向下傳遞型態之火焰。研究分為引燃及火焰熄滅兩大方面: (1)在引燃方面,我們比較預混氨氣/空氣燃料使用傳統電極放電(Conventional Spark Discharge, CS)與奈秒脈衝放電(Nanosecond repetitively pulsed discharge, NRPD)的MIE,也探討當氨氣/空氣燃料混氫時,對引燃的影響。(2)在火焰熄滅方面,使用不同引燃能量,比較向下傳遞與中心引燃兩種火焰型態的整體熄滅極限之異同,而向上與向下傳遞的火焰的整體熄滅結果雷同。結果顯示在當量比f = 0.75 ~ 1.2時,CS比NRPD的MIE來得低,這是因為NRPD火核會因連續放電的影響,多分裂成兩小火核使得熱損失較大。然而,我們發現NRPD可有效拓展貧富油可燃極限,從CS的f = 0.75 ~ 1.2到NRPD的f = 0.66 ~ 1.42,這是因為NRPD的長時間連續放電有助於活躍分子和自由基的累積,最終產生可自我傳遞的火焰。此外,當氨氣/空氣燃料混氫時,最小引燃能量也可大幅下降、貧富油可燃極限也被大幅拓展,即使僅添加2 vol.%的氫氣,貧富油可燃極限可被拓展從純氨/空氣燃料的f = 0.75 ~ 1.2到f = 0.5 ~ 1.5。另一方面,火焰熄滅的結果顯示,向下傳遞比起中心引燃更難以被紊流整體熄滅,但向下傳遞火焰僅能在f = 0.75 ~ 1.2時傳遞,這是因f < 0.75或f > 1.25時,層流火焰速度(SL)太低且火焰厚度(dF)太厚,故火焰無法向下傳遞。最後,我們發現向下傳遞火焰臨界熄滅所需之紊流方均根擾動速度臨界值u′c會隨值增加而明顯增加,從f = 0.75之u′ = 1.4 m/s到f = 1.2之u′c = 7 m/s;向下傳遞的富油火焰出乎意外地能抵抗強紊流,使整體熄滅變得更為困難。此現象我們透過量測燃燒後生成物的氫氣含量體積比[H2]來解釋,結果顯示,在f = 0.9時,[H2] = 1.4 vol.%,但是在f = 1.2時,[H2] = 6.4 vol.%,此結果與先前Kobayashi的模擬結果有相同趨勢。是故,在富氨/空氣火焰燃燒後之氫氣含量的大幅增加,使得富氨火焰更能抵抗強烈紊流。前述結果,對未來使用氨為燃料之燃氣渦輪機設計應有所助益。
摘要(英) This dissertation experimentally measures laminar and turbulent minimum ignition energies (MIE) and flame global quench (GQ) conditions of premixed ammonia/air mixtures using a fan-stirred cruciform burner and a well-controlled high-voltage pulse ignition device. The fan-stirred cruciform burner was constructed by a large horizontal cylindrical vessel and a pair of vertical tubes symmetrically welded on its central region. A pair of counter-rotating fans driven by two 10 HP motors with perforated plates were installed in the two ends of the horizontal vessel that can be used to generate a controllable near-isotropic turbulence having a controllable r.m.s. turbulence fluctuation velocity (u′ = 0 ~ 7.2 m/s) with negligible mean velocities in the central region of the cruciform burner. Three ignition locations using a pair of electrodes positioned at the center of the burner, the top of the upper vertical tube, and the bottom of the low vertical tube are selected to generate a central-ignited flame, a downwardly-propagating flame, and an upwardly-propagating flame, respectively. The experiments can be divided into two parts, i.e. (1) MIE measurements and (2) flame GQ studies. For MIE measurements, we compare the ignition similitudes and differences of premixed ammonia/air mixtures between two ignition systems, i.e. conventional spark discharge (CS) and nanosecond repetitively pulsed discharge (NRPD). Moreover, we also investigate the influence of hydrogen addition on MIE. For flame GQ studies, we compare flame GQ limits of central-ignited flame and downwardly-propagating flame using different ignition energies. Here we note that flame GQ limits between downward propagation flames and upward propagation flames are roughly the same. (1) The MIE measurement results show that the MIEs of CS are smaller than those of NRPD in the range of f = 0.75 ~ 1.2 due to the difference of the flame kernel propagation between two ignition systems. However, the flammability ranges of ammonia/air mixtures can be extended by using NRPD where f = 0.66 ~ 1.42 as compared with using CS where f = 0.75 ~ 1.2. This is because the continuously pulsed NRPD can accumulate the active species and radicals. For hydrogen addition ammonia/air flame, even just adding 2 vol.% H2 MIE is significantly reduced by an order of magnitude and the flammability limits can be also extended from pure ammonia/air mixture range of f = 0.75 ~ 1.2 to f = 0.5 ~ 1.5. (2) The flame GQ results show that the large downwardly-propagating flames initiated from the top vertical tube of the cruciform burner are much more difficult to be globally quenched by near-isotropic turbulence than the small central ignition kernels for spherical flames. For the downward propagation flames, flame-turbulence interactions in the central uniform region only occur within a range of equivalence ratio f = 0.75-1.2; flames cannot propagate downwardly at too lean (f = 0.7) and too rich (f = 1.25) conditions because of too small laminar burning velocity (SL) and large laminar flame thickness (dF). The critical values of u′ (u′c) for GQ of downwardly-propagating ammonia/air flames continue to increase with increasing f from u′c = 1.4 m/s at f = 0.75 to u′c = 7 m/s at f = 1.2. Such surprising resistance of rich downward propagation ammonia/air flames to GQ by intense turbulence is explained by measurements of the remaining H2 mole fraction percentage in the product that varies from 1.4% at f = 0.9 to 6.4% at f = 1.2 having the same trend as that predicted by a chemical kinetics model proposed by Kobayashi. These results may be useful to design a better combustion strategy for future ammonia gas turbines.
關鍵字(中) ★ 預混氨氣/空氣火焰
★ 層流和紊流最小引燃能量
★ 火焰整體熄滅
★ 向下傳遞火焰與中心引燃火焰
★ 等向性紊流場
關鍵字(英) ★ Premixed ammonia/air flames
★ Laminar and turbulent minimum ignition energy
★ Flame global quench
★ Downward propagation versus central ignition
★ Intense near-isotropic turbulence
論文目次 中文摘要 i
Abstract ii
致謝 iv
Contents v
List of Tables viii
List of Figures ix
Nomenclature xii
第一章 導論 1
Chapter 1 Introduction 3
1.1 Background and motivation 3
1.1.1 Ammonia as a fuel in combustion 4
1.1.2 Minimum ignition energy and ignition transition 5
1.1.3 Flame global quench 6
1.2 Objectives of this study 7
1.3 Thesis outline 7
第二章 文獻回顧 8
Chapter 2 Relevant literature review 12
2.1 Properties of ammonia/air premixed flames 12
2.1.1 Characteristics of laminar ammonia/air premixed flames 12
2.1.2 Chemical properties of ammonia/air premixed flames 15
2.2 Ignition source and minimum ignition energy 18
2.2.1 Conventional spark and nanosecond repetitively pulse discharge 18
2.2.2 Minimum ignition energy and minimum ignition energy transition 20
2.3 Flame global quench by turbulence 21
第三章 實驗設備與方法 24
Chapter 3 Experimental setup 26
3.1 Fan-stirred turbulent premixed combustion chamber 26
3.2 The determination of global quench (GQ) or no GQ 28
3.3 High-voltage ignition systems and minimum ignition energy measurement 30
3.3.1 Conventional spark ignition and nanosecond respectively pulsed discharge 30
3.3.2 Logistical regression 32
3.4 Experimental procedure and the notice to do ammonia combustion 34
第四章 結果與討論 35
Chapter 4 Results and discussion 36
4.1 Flammability limits and ignition transition by two ignition sources 36
4.1.1 The flammability criterion by NRPD and CS 36
4.1.2 Ammonia flammability limits by NRPD for spherical flame initiation 38
4.1.3 Ignition transition of stoichiometric ammonia/air mixture using both NRPD and CS 41
4.2 MIE of ammonia/air mixture with hydrogen addition 45
4.3 Global quench conditions of premixed ammonia/air flames 47
第五章 結論與未來工作 55
Chapter 5 Conclusion and future work 57
5.1 Premixed ammonia/air flames ignition with CS and NRPD 57
5.2 Premixed ammonia/air flames global quench 58
5.3 Future works 59
References 61
參考文獻 1. National Academies of Sciences, Engineering, and Medicine. Attribution of Extreme Weather Events in the Context of Climate Change. The National Academies Press, Washington DC, 2016. https://doi.org/10.17226/21852.
2. RE100, The Climate Group, https://www.theclimategroup.org/about_re100.
3. Renewable Energy Certificates (RECs), https://www.epa.gov/green-power-markets/renewable-energy-certificates-recs.
4. National Renewable Energy Certification Center, https://www.trec.org.tw/.
5. A. Valera-Medina, H. Xiao, M. Owen-Jones, W.I.F. David, P.J. Bowen, Ammonia for power, Prog. Energy Combust. Sci. 69 (2018) 63–102.
6. H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37 (2019) 109–133.
7. M. Nose, T. Kawakami, S. Nakamura, H. Kuroki, M. Kataoka, M. Yuri, Development of hydrogen/ammonia firing gas turbine for decarbonized society, Mitsubishi Heavy Ind. Tech. Rev. 58 (2021) 1–11.
8. K. Tomida, K. Kodo, D. Kobayashi, Y. Kato, S. Suemori, Y. Urashita, Efforts toward introduction of SOFC-MGT hybrid system to the market. Mitsubishi Heavy Ind. Tech. Rev. 55 (2018) 1–5.
9. S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, 1st ed., Elsevier, Kidlington UK, 2003.
10. J. Hoelzen, D. Silberhorn, T. Zill, B. Bensmann, R. Hanke-Rauschenbach, Hydrogen-powered aviation and its reliance on green hydrogen infrastructure – Review and research gaps, Int. J. Hydrog. Energy 47 (2022) 3108–3130.
11. S. Nicolay, S. Karpuk, Y. Liu, Ali Elham, Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen, Int. J. Hydrog. Energy 46 (2021) 32676–32694.
12. W.M. Haynes, CRC handbook of chemistry and physics, 97th ed., CRC Press, 2016, pages 6–91.
13. A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures, Fuel 159 (2015) 98–106.
14. A.A. Konnov, Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism, Combust Flame 156 (2009) 2093–2105.
15. A.J. Reiter, S.C. Kong, Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions, Energy Fuels 22 (2008) 2963–2971.
16. J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K. Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, Int. J. Hydrog. Energy 43 (2018) 3004–3014.
17. Z. Chen, M.P. Burke, Y. Ju, One the critical flame radius and minimum ignition energy for spherical flame initiation, Proc. Combust. Inst. 33 (2011) 1219–1226.
18. E. Kroch, Ammonia-A fuel for motor buses, J. Inst. Pet. 31 (1945) 213–223.
19. NASA, NASA Armstrong fact sheet: X-15 hypersonic research program, available at <http://www.nasa.gov/centers/armstrong/news/FactSheets/FS052-DFRC.html>.
20. Pratt, D.T., Performance of ammonia-fired Gas-turbine Combustors, Technical Report No.9, DA-04-200-AMC-791(x), Berkley University of California (1967).
21. A. Hayakawa, T. Goto, R. Mimoto, Y. Arakawa, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures, Fuel 159 (2015) 98–106.
22. A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D.K.A. Somarathne, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, Int. J. Hydrog. Energy 40 (2015) 9570–9578.
23. J. Otomo, M. Koshi, T. Mitsumori, H. Iwasaki, K. Yamada, Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion, Int. J. Hydrog. Energy 43 (2018) 3004–3014.
24. F.J. Verkamp, M.C. Hardin, J.R. Williams, Ammonia combustion properties and performance in gas-turbine burners, Proc. Combust. Inst. 11 (1967) 985–992.
25. A.J. Reiter, S.C. Kong, Demonstration of compression-ignition engine combustion using ammonia in reducing greenhouse gas emissions, Energy Fuels 22 (2008) 2963–2971.
26. Energy imports, net (% of energy use) – Japan, The World Bank, https://data.worldbank.org/indicator/EG.IMP.CONS.ZS?locations=JP.
27. K. Aika, H. Kobayashi, CO2 Free Ammonia as an Energy Carrier-Japan’s Insights, Springer Nature, Singapore, 2022.
28. Cross-ministerial Strategic Innovation Promotion Program, Japan Science and Technology Agency, available at https://www.jst.go.jp/sip/pdf/SIP_energycarriers2016_en.pdf.
29. K.D.K.A. Somarathne, A. Hayakawa, H. Kobayashi, Numerical investigation on the combustion characteristics of turbulent premixed ammonia/air flames stabilized by a swirl burner, J. Fluid Sci. Tech. 11 (2016) JFST0026 1–4.
30. A. Hayakawa, Y. Arakawa, R. Mimoto, K.D.K.A. Somarathne, T. Kudo, H. Kobayashi, Experimental investigation of stabilization and emission characteristics of ammonia/air premixed flames in a swirl combustor, Int. J. Hydrog. Energy 42 (2017) 14010–14018.
31. K.D.K.A. Somarathne, S. Hatakeyama, A. Hayakawa, H. Kobayashi, Numerical study of a low emission gas turbine like combustor for turbulent ammonia/air premixed swirl flames with a secondary air injection at high pressure, Int. J. Hydrog. Energy 43 (2017) 27388–27399.
32. B. Lewis , G. von Elbe , Combustion , Flame and explosions of gases, 3rd ed., Academic Press, Orlando, 1987, pages 333–361.
33. R.K. Eckhoff, M. Ngo, W. Olsen, On the minimum ignition energy (MIE) for propane/air, J. Hazard. Mater. 175 (2010) 293–297.
34. T. Horstmann, W. Leuckel, B. Maurer, U. Maas, Influence of turbulent flow conditions on the ignition of flammable gas/air mixtures, Process Saf. Prog. 20 (2001) 215–224.
35. Z. Chen, M.P. Burke, Y. Ju, On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc. Combust. Inst. 33 (2011) 1219–1226.
36. N. Chakraborty, E. Mastorakos, R.S. Cant, Effects of turbulence on spark ignition in inhomogeneous mixtures: A direct numerical simulation (DNS) study, Combust. Sci. Technol. 179 (2007) 293–317.
37. M. Kono, K. Hatori, K. Iinuma, Investigation on ignition ability of composite sparks in flowing mixtures, Proc. Combust. Inst. 20 (1984) 133–140.
38. Y. Ko, R.W. Anderson, V.S. Arpaci, Spark ignition of propane-air mixtures near the minimum ignition energy: part I. An experimental study, Combust. Flame 83 (1991) 75–87.
39. C.C. Huang, S.S. Shy, C.C. Liu, Y.Y. Yan, A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc. Combust. Inst. 31 (2007) 1401–1409.
40. S.S. Shy, W.T. Shih, C.C. Liu, More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes, Combust. Sci. Technol. 180 (2008) 1735–1747.
41. S.S. Shy, C.C. Liu, W.T. Shih, Ignition transition in turbulent premixed combustion, Combust. Flame 157 (2010) 341–350.
42. M.W. Peng, S.S. Shy, Y.W. Shiu, C.C. Liu, High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust. Flame 160 (2013) 1755–1766.
43. S.S. Shy, Y.W. Shiu, L.J. Jiang, C.C. Liu, S. Minaev, Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm, Proc. Combust. Inst. 36 (2017) 1785–1791.
44. L.J. Jiang, S.S. Shy, M.T. Nguyen, S.Y. Huang, D.W. Yu, Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion, Combust. Flame 187 (2018) 87–95.
45. M.T. Nguyen, S.S. Shy, Y.R. Chen, B.L. Lin, S.Y. Huang, C.C. Liu, Conventional spark versus nanosecond repetitively pulsed discharge for a turbulence facilitated ignition phenomenon, Proc. Combust. Inst. 38 (2021) 2801–2808.
46. S.S. Shy, Y.C. Liao, Y.R. Chen, S.Y. Huang, Two ignition transition modes at small and large distances between electrodes of a lean primary reference automobile fuel/air mixture at 373 K with Lewis number >> 1, Combust. Flame 225 (2021) 340–348.
47. S.S. Shy, Y.R. Chen, B.L. Lin, A. Maznoy, Ignition enhancement and deterioration by nanosecond repetitively pulsed discharges in a randomly-stirred lean n-butane/air mixture at various inter-electrode gaps, Combust. Flame 231 (2021) 111506.
48. Y.R. Chen, S.S. Shy, Can the phenomenon of turbulence facilitated ignition through differential diffusion occur in laser-induced spark ignition? Combust. Flame 242 (2021) 112165.
49. J. Moorhouse, A. Williams, T.E. Maddison, An investigation of the minimum ignition energies of some C1 to C7 hydrocarbons, Combust. Flame 23 (1974) 203–213.
50. J.M. Donbar, J.F. Driscoll, C.D. Carter, Strain rates measured along the wrinkled flame contour within turbulent non-premixed jet flames, Combust. Flame 125 (2001) 1239–1257.
51. D. Bradley, M. Shehata, M. Lawes, P. Ahmed, Flame extinctions: Critical stretch rates and sizes, Combust. Flame 212 (2020) 459–468.
52. W.L. Buckley, H.W. Husa, Combustion Properties of Ammonia, Chem. Eng. Prog. 58 (1962) 81–84.
53. F.J. Verkamp, M.C. Hardin, J.R. Williams, Ammonia combustion properties and performance in gas-turbine burners, Proc. Combust. Inst. 11 (1967) 985–992.
54. H. Lesmana, M. Zhu, Z. Zhang, J. Gao, J. Wu, D. Zhang, An experimental investigation into the effect of spark gap and duration on minimum ignition energy of partially dissociated NH3 in air, Combust. Flame 241 (2022) 112053.
55. E. Fernández-Tarrazo, R. Gómez-Miguel, M. Sánchez-Sanz, Minimum ignition energy of hydrogen–ammonia blends in air, Fuel 337 (2023) 127128.
56. D. Bradley, M. Lawes, K. Liu, R. Woolley, The quenching of premixed turbulent flames of iso-octane, methane and hydrogen at high pressures, Proc. Combust. Inst. 31 (2007) 1393–1400.
57. S. Colson, A. Hayakawa, T. Kudo, H. Kobayashi, Extinction characteristics of ammonia/air counterflow premixed flames at various pressures, J. Therm. Sci. Technol. 11 (2016) JTST0048 1–11.
58. D. Bradley, Fundamentals of Lean Combustion, Ch. 2 in: D. Dunn-Rankin (Ed.), Lean Combustion Technology and Control, Elsevier, Amsterdam, 2016, pages 21–61.
59. V. Smil, Population growth and nitrogen: An exploration of a critical existential link, Popul. Dev. Rev. 17 (1991) 569–601.
60. A. Pearson, Refrigeration with ammonia, Int. J. Refrig. 31 (2008) 545–551.
61. M. Appl, Ammonia Production Processes, Ch. 2 in: ULLMANN′S Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2011.
62. One extra reference NIST Chemistry WebBook, SRD 69, Thermophysical Properties of Fluid Systems, National Institute of Standard and Technology, available at http://webbook.nist.gov/chemistry/fluid/.
63. E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames Combust, Flame 187 (2018) 185–198.
64. A.A. Konnov, A. Mohammad, V.R. Kishore, N.I. Kim, C. Prathap, S. Kumar, A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures, Prog. Energy Combust. Sci. 68 (2018) 197–267.
65. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, et al., GRI Mech 3.0. Gas Research Institute, available at http://www.me.berkeley.edu/gri_mech/.
66. A.P. Kelley, W. Liu, Y.X. Xin, A.J. Smallbone, C.K. Law, Laminar flame speeds, non-premixed stagnation ignition, and reduced mechanisms in the oxidation of iso-octane, Proc. Combust. Inst. 33 (2011) 501–508.
67. M. Chaos, A. Kazakov, Z. Zhao, F.L. Dryer, A high-temperature chemical kinetic model for primary reference fuel, Int. J. Chem. Kinetics 39 (2007) 399–414.
68. Z. Tian, Y. Li, L. Zhang, P. Glarborg, F. Qi, An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure, Combust. Flame 156 (2009) 1413–1426.
69. D. Dandy, Bioanalytical Microfluidics Program, Color State Univ. n.d., available at http://navier.engr.colostate.edu/.
70. H. Xiao, A. Valera-Medina, P.J. Bowen, Study on premixed combustion characteristics of co-firing ammonia/methane fuels, Energy 140 (2017) 125–135.
71. T. Hasegawa, M. Sato, Study of ammonia removal from coal-gasified fuel, Combust. Flame 114 (1998) 246–258.
72. Ø. Skreiberg, P. Kilpinen, P. Glarborg, Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor, Combust. Flame 136 (2004) 501–518.
73. T. Mendiara, P. Glarborg, Ammonia chemistry in oxy-fuel combustion of methane, Combust. Flame 156 (2009) 1937–1949.
74. J.A. Miller, M.D. Smooke, R.M. Green, R.J. Kee, Kinetic modeling of the oxidation of ammonia in flames, Combust. Sci. Technol. 34 (1983) 149–176.
75. B. Mei, X. Zhang, S. Ma, M. Cui, H. Guo, Z. Cao, Y. Li, Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions, Combust. Flame 210 (2019) 236–246.
76. United States Environmental Protection Agency, available at https://www.epa.gov/ghgemissions/understanding-global-warming-potentials.
77. A. Hayakawa, M. Hayashi, M. Kovaleva, G.J. Gotama, E.C. Okafor, S. Colson, S. Mashruk, A. Valera-Medina, T. Kudo, H. Kobayashi, Experimental and numerical study of product gas and N2O emission characteristics of ammonia/hydrogen/air premixed laminar flames stabilized in a stagnation flow, Proceedings of the Combustion Institute, https://doi.org/10.1016/j.proci.2022.08.124. (in press)
78. D.A. Lacoste, Flames with plasmas, Proceedings of the Combustion Institute, https://doi.org/10.1016/j.proci.2022.06.025. (in press)
79. Y. Ju, W. Sun, Plasma assisted combustion: Dynamics and chemistry, Prog. Energy Combust. Sci. 48 (2015) 21–83.
80. I.N. Kosarev, N.L. Aleksandrov, S.V. Kindysheva, S.M. Starikovskaia, A.Y. Starikovskii, Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma: CH4-containing mixtures, Combust. Flame 154 (2008) 569-586.
81. N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
82. C.F. Kaminski, J. Hult, M. Aldén, S. Lindenmaier, A. Dreizler, U. Maas, M. Baum, Spark ignition of turbulent methane/air mixtures revealed by time-resolved planar laser-induced fluorescence and direct numerical simulations, Proc. Combust. Inst. 28 (2000) 399–405.
83. D. Bradley, M. Lawes, M.S. Mansour, Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2MPa, Combust. Flame 158 (2011) 123–138.
84. R.G. Abdel-Gayed, D. Bradley, M.N. Hamid, M. Lawes, Lewis number effects on turbulent burning velocity, Proc. Combust. Inst. 20 (1985) 505–512.
85. R. Ichimura, K. Hadi, N. Hashimoto, A. Hayakawa, H. Kobayashi, O. Fujita, Extinction limits of an ammonia/air flame propagating in a turbulent field, Fuel 246 (2019) 178–186.
86. G. Hashimoto, K. Hadi, Y. Xia, A. Hamid, N. Hashimoto, A. Hayakawa, H. Kobayashi, O. Fujita, Turbulent flame propagation limits of ammonia/methane/air premixed mixture in a constant volume vessel, Proc. Combust. Inst. 38 (2021) 5171–5180.
87. S.I. Yang, S.S. Shy, Global quenching of premixed CH4/air flames: Effects of turbulent straining, equivalence ratio, and radiative heat loss, Proc. Combust. Inst. 29 (2002) 1841–1847.
88. C.C. Liu, S.S. Shy, Y.C. Dong, M.W. Peng, More on global quenching of premixed CH4/diluent/air flames by intense near-isotropic turbulence, Combust. Sci. Technol. 184 (2012) 1916–1933.
89. S.S. Shy, W.J. Lin, J.C. Wei, An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc. R. Soc. Lond. A 456 (2000) 1997–2019.
90. T.S. Yang, S.S. Shy, Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements, J. Fluid Mech. 526 (2005) 171–216.
91. S.P.M. Bane, J.E. Shepherd, E. Kwon, A.C. Day, Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures, Int. J. Hydrog. 36 (2011) 2344-2350.
92. M.T. Nguyen, S.S. Shy, A transition of ignition kernel delay time at the early stages of lean premixed n-butane/air turbulent spherical flame propagation, Appl. Sci. 12(08) (2022) 3914.
93. M. Castela, S. Stepanyan, B. Fiorina, A. Coussement, O. Gicquel, N. Darabiha, C.O. Laux, A 3-D DNS and experimental study of the effect of the recirculating flow pattern inside a reactive kernel produced by nanosecond plasma discharges in a methane-air mixture, Proc. Combust. Inst. 36 (2017) 4095-4103.
94. S. Lovascio, J. Hayashi, S. Stepanyan, G.D. Stancu, C.O. Laux, Cumulative effect of successive nanosecond repetitively pulsed discharges on the ignition of lean mixtures, Proc. Combust. Inst. 37 (2019) 5553-5560.
指導教授 施聖洋(Shy, Shenqyang (Steven)) 審核日期 2023-5-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明