博碩士論文 110323609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:18.227.13.249
姓名 胡翰德(Fathin Muhammad Mahdhudhu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高壓高溫化學計量預混正丁醇/空氣和第三丁醇/空氣燃氣之層流和紊流燃燒速度量測
(Laminar and Turbulent Burning Velocities of Stoichiometric Premixed n-Butanol/Air and tert-Butanol/Air Mixtures Under High-Pressure, High-Temperature Conditions)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 溫室氣體排放、燃料價格的不確定性以及尋找低汙染物排放的可再生能源選項,為許多學者研究生質燃料的主要目標。以醇類為基底的生質燃料被廣泛的接受作為汽油替代燃料選項之一,其可用於火花引燃之內燃機或是其他燃燒設備,來降低汙染物的排放。生質燃料丁醇和其異構物,其具有低不穩定性、低腐蝕性和在寒冷天氣下較少的引燃失效等優點。本論文以實驗之方式,研究正丁醇/空氣和第三丁醇/空氣混合物在溫度T = 373K、壓力 p = 1-5 atm和方均根紊流擾動速度u = 0-4.2 m/s之條件下的層流和紊流火焰燃燒速度(SL和ST)。實驗於一雙腔體風扇擾動之十字型燃燒器進行,藉由風扇對轉可於此燃燒器中心處產生一近似等向性紊流場,且平均速度可忽略不計,並使用高速攝影機記錄火焰半徑<R(t)>隨時間之變化,以求得SL和ST。另外,為了能與其他研究團隊量測之紊流燃燒速度進行比較,我們使用Bradley平均傳遞變數(c̅)將ST轉換至c̅ = 0.5處,故ST,c̅=0.5 = ST(<R>c̅=0.1/<R>c̅=0.5)2 = ST(1.4)2。

研究結果有主要三點。第一,正丁醇/空氣和第三丁醇/空氣混合物的層流火焰速度(SL)隨著壓力的增加而下降,相反地,在一相同的u條件下,紊流火焰燃燒速度(ST)隨著壓力增加而上升。ST的增加歸因於,壓力與運動黏滯係數的倒數成反比(  -1 p-1),故壓力增加,雷諾數也會增加。第二,在相同條件下,正丁醇/空氣的SL和ST較第三丁醇/空氣混合物高,此一差異歸因於正丁醇和第三丁醇之件的化學反應路徑,且一般認知的直鏈燃料火焰速度較支鏈燃料快也適用於醇類。第三,本研究使用文獻常用的四個火焰速度一般通式,來觀察正丁醇/空氣和第三丁醇/空氣混合物的SL和ST之預測和其自我相似性。
摘要(英) Greenhouse gas emissions, uncertainties related to fuel prices, and seeking different options for renewable energy with low emissions are the main goals for many researchers to venture into biofuel research. Alcohol-based biofuels are widely accepted as alternative fuel sources to partly or fully consume for spark-ignition engines or other combustion applications thereby reducing global warming emissions. Butanol isomers are interesting alcohol-based biofuels due to their advantages of low lubricity, low corrosion, and fewer ignition problems in cold weather. This study investigates experimentally the laminar and turbulent burning velocities (SL and ST) of n-butanol/air and tert-butanol/air mixtures at a constant high-temperature T = 373 K over a range of pressure p = 1-5 atm and r.m.s turbulent fluctuation velocity u = 0 – 4.2 m/s. Experiments were performed in a dual-chamber fan-stirred cruciform burner capable of generating near-isotropic turbulence with negligible mean velocities. A high-speed camera is used to record the time evolutions of flame radii <R(t)> within the experimental domain 25 mm ≤ <R(t)> ≤ 45 mm so that SL and ST can be determined. For turbulent burning velocity data convert using Bradley’s mean progress variable to ST,c̅=0.5 because it shows a better representative regardless of the flame geometries with ST,c̅=0.5 = ST(<R>c̅=0.1/<R>c̅=0.5)2 = ST(1.4)2.

Results show three main points. First, the value of the SL of n-butanol and tert-butanol mixtures decreases with increasing pressure. It indicates that n-butanol/air and tert-butanol/air mixture present the same instability behavior with the fact that the density of the unburned mixture (u) increases in proportion to the increase of pressure but the mass burning capability of laminar premixed flame has its limitation. In contrast, the value of ST increases with increasing pressure at any given u. The increase of Reynolds number plays a role in this situation because the pressure is inversely from kinematic viscosity,   -1 p-1. In addition, the laminar and turbulent burning velocities of the n-butanol/air mixture are generally faster than those of the tert-butanol/air mixture under the same conditions. The main reason for the difference value in the laminar and turbulent burning velocity between n-butanol and tert-butanol is chemical kinetics.. Moreover, normalization analysis of these measured ST/SL data of n-butanol/air and tert-butanol/air mixtures are made by using four selected general correlations from the literature to observe their predication merits and drawbacks.
關鍵字(中) ★ 正丁醇
★ 叔丁醇
★ 層流燃燒速度
★ 湍流燃燒速度
★ 一般相關性
關鍵字(英) ★ n-Butanol
★ tert-Butanol
★ Laminar Burning Velocity
★ Turbulent Burning Velocity
★ General Correlations
論文目次 Abstract vi
摘要 vii
Content viii
List of Figures x
List of Tables xii
Nomenclature xiii
Chapter I Introduction 1
1.1 Background 1
1.2 Objective 4
1.3 Thesis Outline 5
Chapter II Literature Review 6
2.1 Butanol 6
2.2 Laminar Premixed Combustion 9
2.2.1 Laminar burning velocity 11
2.2.2 Laminar burning velocity of butanol 13
2.2.3 Pressure effect on the laminar burning velocity of butanol 15
2.3 Turbulent Premixed Combustion 18
2.3.1 Turbulent Regimes 19
2.3.2 Turbulent burning velocity of butanol 21
2.4 General correlation with Lewis number consideration 22
2.4.1 General correlation proposed by Nguyen et al. (Originated from Kobayashi et al., Liu et al., and Chaudhuri et al.) 23
2.4.2 General correlation proposed by Bradley et al. 28
Chapter III Experimental Methods 30
3.1 Premixed combustion facilities 30
3.1.1 Cruciform burner 30
3.1.2 Heating system 33
3.1.3 Fuel supplied system 34
3.1.4 Flame imaging system 34
3.2 Parameters calculation 36
3.2.1 Equivalence ratio 36
3.2.2 Lewis number 37
3.3 Experimental procedures 39
Chapter IV Results and Discussion 41
4.1 Flame propagation image 41
4.2 Determination of laminar burning velocities 42
4.3 Determination of turbulent burning velocities 43
4.4 Pressure effect on the laminar burning velocities 45
4.5 Pressure effect on the turbulent burning velocities 47
4.6 Turbulent intensity effect on the laminar and turbulent burning velocity 48
4.7 General correlations 50
Chapter V Conclusions and Future Works 53
5.1. Conclusion 53
5.2 Future works 53
Bibliography 55
參考文獻 [1]S. Mahapatra, D. Kumar, B. Singh, and P. K. Sachan, “Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus,” Energy Nexus, vol. 4, p. 100036, Dec. 2021, doi: 10.1016/j.nexus.2021.100036.
[2] A. R. Singh, S. K. Singh, and S. Jain, “A review on bioenergy and biofuel production,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 510–516. doi: 10.1016/j.matpr.2021.03.212.
[3] B. Amerit, J. M. Ntayi, M. Ngoma, H. Bashir, S. Echegu, and M. Nantongo, “Commercialization of biofuel products: A systematic literature review,” Renewable Energy Focus, vol. 44. Elsevier Ltd, pp. 223–236, Mar. 01, 2023. doi: 10.1016/j.ref.2022.12.008.
[4] B. Ashok, B. Saravanan, K. Nanthagopal, and A. K. Azad, “Investigation on the effect of butanol isomers with gasoline on spark ignition engine characteristics,” in Advanced Biofuels: Applications, Technologies and Environmental Sustainability, Elsevier, 2019, pp. 265–289. doi: 10.1016/B978-0-08-102791-2.00011-8.
[5] P. Nieuwenhuis and P. Wells, “Fuel cells and the hydrogen economy,” in The Automotive Industry and the Environment, Elsevier, 2003, pp. 87–99. doi: 10.1016/b978-1-85573-713-6.50010-x.
[6] A. C. Hansen, Q. Zhang, and P. W. L. Lyne, “Ethanol-diesel fuel blends - A review,” Bioresour Technol, vol. 96, no. 3, pp. 277–285, 2005, doi: 10.1016/j.biortech.2004.04.007.
[7] C. Jin, M. Yao, H. Liu, C. F. F. Lee, and J. Ji, “Progress in the production and application of n-butanol as a biofuel,” Renewable and Sustainable Energy Reviews, vol. 15, no. 8. Elsevier Ltd, pp. 4080–4106, 2011. doi: 10.1016/j.rser.2011.06.001.
[8] P. S. Veloo and F. N. Egolfopoulos, “Flame propagation of butanol isomers/air mixtures,” Proceedings of the Combustion Institute, vol. 33, no. 1, pp. 987–993, 2011, doi: 10.1016/j.proci.2010.06.163.
[9] A. Katoch, A. Alfazazi, S. M. Sarathy, and S. Kumar, “Experimental and numerical investigations on the laminar burning velocity of n-butanol + air mixtures at elevated temperatures,” Fuel, vol. 249, pp. 36–44, Aug. 2019, doi: 10.1016/j.fuel.2019.03.047.
[10] H. Zhao, J. Wang, X. Cai, H. Dai, and Z. Huang, “Turbulent burning velocity and its unified scaling of butanol isomers/air mixtures,” Fuel, vol. 306, Dec. 2021, doi: 10.1016/j.fuel.2021.121738.
[11] X. Gu, Z. Huang, S. Wu, and Q. Li, “Laminar burning velocities and flame instabilities of butanol isomers-air mixtures,” Combust Flame, vol. 157, no. 12, pp. 2318–2325, Dec. 2010, doi: 10.1016/j.combustflame.2010.07.003.
[12] T. Wallner, S. A. Miers, and S. McConnell, “A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition engine,” J Eng Gas Turbine Power, vol. 131, no. 3, May 2009, doi: 10.1115/1.3043810.
[13] T. G. Ambaye, M. Vaccari, A. Bonilla-Petriciolet, S. Prasad, E. D. van Hullebusch, and S. Rtimi, “Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives,” Journal of Environmental Management, vol. 290. Academic Press, Jul. 15, 2021. doi: 10.1016/j.jenvman.2021.112627.
[14] I. Veza, M. F. Muhamad Said, and Z. A. Latiff, “Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation,” Biomass and Bioenergy, vol. 144. Elsevier Ltd, Jan. 01, 2021. doi: 10.1016/j.biombioe.2020.105919.
[15] D. Cai et al., “Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends,” Separation and Purification Technology, vol. 298. Elsevier B.V., Oct. 01, 2022. doi: 10.1016/j.seppur.2022.121244.
[16] W. R. da S. Trindade and R. G. dos Santos, “Review on the characteristics of butanol, its production and use as fuel in internal combustion engines,” Renewable and Sustainable Energy Reviews, vol. 69. Elsevier Ltd, pp. 642–651, Mar. 01, 2017. doi: 10.1016/j.rser.2016.11.213.
[17] Stephen R. Turns, An Introduction to Combustion Concepts and Applications, Third.
[18] Á. L. De Bortoli, G. S. L. Andreis, and F. N. Pereira, “Models for Reactive Flows,” in Modeling and Simulation of Reactive Flows, Elsevier, 2015, pp. 73–122. doi: 10.1016/b978-0-12-802974-9.00005-2.
[19] G. E. Andrews and D. Bradley, “Determination of Burning Velocities: A Critical Review, 1972.
[20] F. Oppong, Z. Luo, X. Li, Y. Song, and C. Xu, “Intrinsic instability of different fuels spherically expanding flames: A review,” Fuel Processing Technology, vol. 234. Elsevier B.V., Sep. 01, 2022. doi: 10.1016/j.fuproc.2022.107325.
[21] A. P. Kelley and C. K. Law, “Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames,” Combust Flame, vol. 156, no. 9, pp. 1844–1851, Sep. 2009, doi: 10.1016/j.combustflame.2009.04.004.
[22] C. C. Liu, S. S. Shy, M. W. Peng, C. W. Chiu, and Y. C. Dong, “High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers,” Combust Flame, vol. 159, no. 8, pp. 2608–2619, Aug. 2012, doi: 10.1016/j.combustflame.2012.04.006.
[23] F. Wu and C. K. Law, “An experimental and mechanistic study on the laminar flame speed, Markstein length and flame chemistry of the butanol isomers,” Combust Flame, vol. 160, no. 12, pp. 2744–2756, Dec. 2013, doi: 10.1016/j.combustflame.2013.06.015.
[24] D. E. Winterbone and A. Turan, “Combustion and Flames,” in Advanced Thermodynamics for Engineers, Elsevier, 2015, pp. 323–344. doi: 10.1016/b978-0-444-63373-6.00015-0.
[25] R. J. Tabaczynski, “Turbulence and turbulent combustion in spark-ignition engines,” in Energy and Combustion Science, Elsevier, 1979, pp. 259–281. doi: 10.1016/b978-0-08-024780-9.50017-4.
[26] H. Tennekes and J. L. Lumley, A First Course in Turbulence. The Massachusetts Institute of Technology, 1972.
[27] Ali Cemal Benim and Khawar J. Syed, “Concepts Related to Combustion and Flow in Premix Burners,” in Flashback Mechanism in Lean Premixed Gas Turbine Combustion, 2015, pp. 5–18.
[28] D. S.-K. Ting, “Premixed Turbulent Flame Propagation,” in Basics of Engineering Turbulence, Elsevier, 2016, pp. 203–226. doi: 10.1016/b978-0-12-803970-0.00010-6.
[29] M. T. Nguyen, D. W. Yu, and S. S. Shy, “General correlations of high pressure turbulent burning velocities with the consideration of Lewis number effect,” Proceedings of the Combustion Institute, vol. 37, no. 2, pp. 2391–2398, 2019, doi: 10.1016/j.proci.2018.08.049.
[30] H. Kobayashi and H. Kawazoe, “Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames,” 2000.
[31] S. Chaudhuri, F. Wu, D. Zhu, and C. K. Law, “Flame speed and self-similar propagation of expanding turbulent premixed flames,” Phys Rev Lett, vol. 108, no. 4, Jan. 2012, doi: 10.1103/PhysRevLett.108.044503.
[32] D. Bradley, A. K. C. Lau, and M. Lawes, “Flame stretch rate as a determinant of turbulent burning velocity ,” Phil. Trans. R. Soc. Lond. A , pp. 359–387, 1992.
[33] H. Kobayashi, Y. Kawabata, and K. Maruta, “Experimental study on general correlation of turbulent burning velocity at high pressure,” 1998.
[34] H. Kobayashi, K. Seyama, H. Hagiwara, and Y. Ogami, “Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature,” Proceedings of the Combustion Institute, vol. 30, no. 1, pp. 827–834, 2005, doi: 10.1016/j.proci.2004.08.098.
[35] D. Bradley, M. Lawes, and M. S. Mansour, “Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2MPa,” Combust Flame, vol. 158, no. 1, pp. 123–138, Jan. 2011, doi: 10.1016/j.combustflame.2010.08.001.
[36] R. G. Abdel-Gayed, D. Bradley, and M. Lawes, “Turbulent burning velocities : a general correlation in terms of straining rates,” Proc. R. Soc. Lond. A, vol. 414, pp. 389–413, 1987.
[37] S. S. Shy, C. C. Liu, J. Y. Lin, L. L. Chen, A. N. Lipatnikov, and S. I. Yang, “Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damköhler, and Karlovitz numbers,” Proceedings of the Combustion Institute, vol. 35, no. 2, pp. 1509–1516, 2015, doi: 10.1016/j.proci.2014.07.026.
[38] M. T. Nguyen, D. Yu, C. Chen, and S. Shy, “General correlations of iso-octane turbulent burning velocities relevant to spark ignition engines,” Energies (Basel), vol. 12, no. 10, 2019, doi: 10.3390/en12101848.
[39] S. Yamada et al., “Measurements and simulations of ignition delay times and laminar flame speeds of nonane isomers,” Combust Flame, vol. 227, pp. 283–295, May 2021, doi: 10.1016/j.combustflame.2020.12.043.
[40] C. C. Liu, S. S. Shy, H. C. Chen, and M. W. Peng, “On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure,” Proceedings of the Combustion Institute, vol. 33, no. 1, pp. 1293–1299, 2011, doi: 10.1016/j.proci.2010.06.083.
[41] L. J. Jiang, S. S. Shy, W. Y. Li, H. M. Huang, and M. T. Nguyen, “High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames,” Combust Flame, vol. 172, pp. 173–182, Oct. 2016, doi: 10.1016/j.combustflame.2016.07.021.
[42] D. Lapalme, R. Lemaire, and P. Seers, “Assessment of the method for calculating the Lewis number of H2/CO/CH4 mixtures and comparison with experimental results,” Int J Hydrogen Energy, vol. 42, no. 12, pp. 8314–8328, Mar. 2017, doi: 10.1016/j.ijhydene.2017.01.099.
[43] F. Dinkelacker, B. Manickam, and S. P. R. Muppala, “Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach,” Combust Flame, vol. 158, no. 9, pp. 1742–1749, Sep. 2011, doi: 10.1016/j.combustflame.2010.12.003.
[44] N. Bouvet, F. Halter, C. Chauveau, and Y. Yoon, “On the effective Lewis number formulations for lean hydrogen/hydrocarbon/ air mixtures,” Int J Hydrogen Energy, vol. 38, no. 14, pp. 5949–5960, May 2013, doi: 10.1016/j.ijhydene.2013.02.098.
[45] M. Lapuerta, J. P. Hernández, and J. R. Agudelo, “An equation for the estimation of alcohol-air diffusion coefficients for modelling evaporation losses in fuel systems,” Appl Therm Eng, vol. 73, no. 1, pp. 539–548, Dec. 2014, doi: 10.1016/j.applthermaleng.2014.08.009.
[46] C. Xu, W. Liu, B. Zhang, H. Liao, W. He, and L. Wei, “Experimental and numerical study on laminar premixed flame characteristics of 2-ethylfuran,” Combust Flame, vol. 234, Dec. 2021, doi: 10.1016/j.combustflame.2021.111631.
[47] J. Vancoillie, G. Sharpe, M. Lawes, and S. Verhelst, “The turbulent burning velocity of methanol-air mixtures,” Fuel, vol. 130, pp. 76–91, Aug. 2014, doi: 10.1016/j.fuel.2014.04.003.
[48] Radissa Dzaky Issafira and Shy Shen-qyang, “High pressure, high temperature laminar and turbulent burning velocities of a toluene gasoline surrogate blending with ethanol and their emissions measurements,” Master thesis, National Central University, 2021.
指導教授 施聖洋(Shenqyang (Steven) Shy) 審核日期 2023-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明