博碩士論文 110353014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.136.22.50
姓名 黃文彥(Wen-Yen Huang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 應用ABAQUS顯性求解器於機械元件之強度及破壞分析:以筆電樞紐為例
(Application of ABAQUS explicit solver for strength and fracture analysis of mechanical components: A case study on laptop hinges)
相關論文
★ 田口分析法驗證射出參數對光碟機面板翹曲變形量之研究★ 聚丙烯射出成型品表面具抗沾黏特性之研究
★ 光學鏡片之有限元素網格品質探討暨模仁全方位體積收縮補償法之研究★ 從模流到結構的集成分析光學鏡片之模仁變形研究
★ 應用反應曲面法進行鏡筒真圓度之射出成型參數優化★ 冠狀動脈三維重建之初步架構
★ Zienkiewicz動態多孔彈性力學模型之穩定性探討★ 外加磁場輔助射出成型對於導電高分子複合材料的磁性纖維配向與導電度之實驗與模擬
★ 骨板與骨釘之參數模型應用於股骨骨折術前規劃★ 光學鏡片模具之異型水路最佳化設計
★ 傳統骨板與解剖骨板對於固定Sanders II-B型跟骨骨折力學分析★ 以線性迴歸分析驗證射出成型縫合角與抗拉強度呈正相關
★ 異形水路模具設計對於金屬粉末射出成型槍機卡榫影響之研究★ 槍機卡榫模流分析參數最佳化之研究
★ 聚碳酸酯與碳纖維複合材料之射出參數對於縫合線強度之研究★ 運用田口方法分析ABS塑膠材料之射出成型參數對拉伸強度的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用有限元素軟體的顯性積分法(Explicit)進行擬靜態模擬(Quasi-static Simulation),評估材料的延性破壞及樞紐組件的最大扭矩以便減少樞紐組件的設計時間及模具試模成本。模擬內的材料延性破壞設定以17-4PH金屬粉末射出成型試棒進行單軸拉伸實驗獲取材料資訊,並以有限元素軟體ABAQUS作材料轉換及拉伸模擬,實驗與模擬結果顯示應力應變曲線相符,其最大應力誤差率介於0.01%至0.13%,塑性斷裂應變誤差率介於0.05%至1.56%,證明材料延性破壞設定的準確性。樞紐扭矩實驗中的心軸使用10B21材料,承架使用SK7T1,兩支材料分別進行單軸拉伸試驗並於軟體內作材料轉換及延性破壞設定,並設定扭矩破壞模擬。從兩者的模擬與實驗結果得知,心軸實驗與模擬結果最大扭矩值誤差率為10%,模擬斷裂位置與實驗相符;承架實驗與模擬結果最大扭矩值誤差率2.5%,並由軟體內觀察到實驗斷裂位置有明顯拉伸應力集中與實際斷裂位置相符。由實驗與模擬結果的相互印證可說明使用顯性積分法進行擬靜態破壞模擬可以幫助預測樞紐的受力行為及最大扭矩值以便縮短樞紐組件設計時間,並避免隱式求解器因高度非線性而迭代不收斂之問題。
摘要(英) This study applies explicit method in finite element software for quasi-static simulations to assess the ductile fracture of materials and the maximum torque of hinge components, aiming to reduce the design time and mold trial costs of hinge components. The ductile fracture settings for materials in the simulation are based on uniaxial tensile experiments conducted on 17-4PH metal powder injection molded specimens to obtain material information. Transformation of material stress strain curve from engineering to true one and tensile simulations are performed using the ABAQUS finite element software. The simulation result of stress-strain curves are highly consistent to experimental ones with a maximum stress error rate ranging from 0.01% to 0.13% and a plastic fracture strain error rate ranging from 0.05% to 1.56%, confirming the correctness of the ductile fracture settings for the material.
In the hinge torque experiments, the core shaft is made of 10B21 material, and the hinge support frame is made of SK7T1 material. Both materials undergo uniaxial tensile tests, and material curve transformation and ductile fracture settings are performed within the software, along with torque simulations. From the comparison of the simulation and experimental results, it is found that the maximum torque values have an error rate of 10% for the core shaft, with the fracture location in simulation matching the experimental results. For the hinge support frame, the maximum torque value has an error rate of 2.5%, and it is observed in the software that there is significant concentration of tensile stress at the actual fracture location.
The consistency between the experimental and simulation results demonstrates that using the explicit method for quasi-static fracture simulation can help predict the behavior of objects under loading and maximum torque value of hinges. This method can help reduce hinge design time while avoiding convergence issues associated with implicit methods due to high nonlinearity.
關鍵字(中) ★ 顯性積分法
★ 擬靜態模擬
★ 延性破壞
★ 破壞應變能
關鍵字(英) ★ Explicit method
★ Quasic-static
★ Ductile damage
★ Fracture energy
論文目次 摘要 i
ABSTRACT ii
謝誌 iv
目錄 v
圖目錄 ix
表目錄 xiii
參數符號表 xiv
第一章、緒論 1
1-1研究動機與目的 1
1-2文獻回顧 2
1-3研究方法 3
1-4 論文架構 4
第二章、基本理論概述 6
2-1 ABAQUS有限元素軟體介紹 6
2-2模擬軟體算法選擇 6
2-3有限元素顯性積分法 8
2-4材料非線性 11
第三章、實驗方法與規劃 13
3-1實驗設備介紹 13
3-1-1射出成型機 13
3-1-2萬能試驗機 15
3-1-3扭力板手治具 16
3-2實驗材料介紹 17
3-2-1 不銹鋼17-4PH 17
3-2-2 硼鋼10B21 18
3-2-3 工具鋼SK7T1 20
3-3實驗規劃 21
3-3-1 17-4PH拉伸實驗 21
3-3-2心軸扭矩破壞實驗 22
3-3-3樞紐承架扭矩實驗 23
第四章、模擬設定及分析 25
4-1拉伸試驗模擬建立 25
4-1-1拉伸試棒三維模型圖 25
4-1-2材料參數設定 26
4-1-3材料的破壞設定 28
4-1-4網格設定 33
4-1-5邊界條件設定 36
4-1-6分析步設定 37
4-2心軸扭矩模擬建立 40
4-2-1心軸三維模型建立 40
4-2-2材料參數設定 40
4-2-3材料的破壞設定 42
4-2-4模型網格建立 44
4-2-5邊界條件設定 45
4-2-6載荷條件 47
4-2-7分析步設定 49
4-3樞紐扭矩模擬設定 50
4-3-1樞紐三維模型圖 50
4-3-2材料參數設定 51
4-3-3材料的破壞設定 53
4-3-4元件接觸設定 55
4-3-5模型網格建立 56
4-3-6邊界條件設定 58
4-3-7載荷條件 60
4-3-8分析步設定 61
第五章、結果與討論 62
5-1拉伸模擬與實驗結果 62
5-2心軸扭矩模擬與實驗結果 70
5-3樞紐承架扭矩模擬與實驗結果 73
第六章、結論與未來展望 78
6-1結論 78
6-2未來展望 79
參考文獻 80
參考文獻 [1]F. J. Harewood, and P. E. McHugh, “Comparison of the implicit and explicit finite element methods using crystal plasticity,” Computational Material Science, vol. 39, no. 2, pp. 481-494, 2007.
[2]W. J. Chung, J. W. Cho, and T. Belytschoko, “On the dynamic effects of explicit FEM in sheet metal forming analysis ,” Engineering Computations, vol. 15, no. 6, pp. 750-776, 1998.
[3]Dassault Systèmes, Abaqus/Explicit: Advanced Topics, 2018.
[4]A. Hillerborg, M. Modéer, and P. E. Petersson, “Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements,” Cement and Concrete Research, vol. 6, no. 6, pp. 773-781, 1976.
[5]A. Hillerborg, “The theoretical basis of a method to determine the fracture energy "G" _"F" of concrete,” Materials and Structures, vol. 18, pp. 291-296, 1985.
[6]Y. Bao, and T. Wierzbicki, “On fracture locus in the equivalent strain and stress triaxiality space,” International Journal of Mechanical Sciences, vol. 46, no. 1, pp. 81–98, 2004.
[7]Y. Bai, and T. Wierzbicki, “A new model of metal plasticity and fracture with pressure and Lode dependence,” International Journal of Plasticity, vol. 24, no. 6, pp. 1071-1096, 2008.
[8]Dassault Systèmes, Abaqus Analysis User’s Guide, Damage evolution and element removal for ductile metals, 2021.
[9]Torque wrench 230DB3, Tohnichi MFG. CO., LTD.
[10]Autograph universal testing machine AG-I 250kN, Shimadzu corporation.
[11]Allrounder 320C golden edition, Arburg GmbH & CO. KG., Germany, 2023.
[12]W. Chen, and A.F. Saleeb, Constitutive Equations for Engineering Materials, vol. 1: Elasticity and Modeling, Revised edition, Amsterdam: Elsevier Science B. V., pp. 580, 1994.
[13]ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materails, 2016.
[14]F. Pelzoldt, and M. Mulser, Standards for Metal Injection Moulding: Progress to-date and future challenges, PIM International, vol. 11, No. 1, pp. 59-66, 2017.
[15]林鴻榮、鄭國華,「中碳鋼加硼效應研究」,經濟部七十年度研究發展專題,1981年。
指導教授 鍾禎元(Chen-Yuan Chung) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明