博碩士論文 110323097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.189.185.221
姓名 洪章凱(Chang-Kai Hung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 ICP-RIE乾蝕刻製程應用於AT-cut石英晶圓之研究
(Research on dry etching process applied to AT-cut quartz wafer by ICP-RIE)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石英具有壓電性、絕緣性、透光性、高硬度與高熱穩定性。常運用 在頻率元件上,而石英會根據不同切角產生多樣的振盪模式,其中 AT- cut 石英的頻率對溫度變化較小,能提供精準的頻率對照,是目前主要 應用於頻率元件的石英切割角度。
在物聯網時代與 5G 產業興起的浪潮下,電子產品皆以輕薄短小且 功能強大為目標而設計,石英頻率元件為通訊設備、車用和各類電子產 品提供穩定頻率與時脈控制,是不可或缺的存在,其設計也隨著微型 化,但傳統機械式製程已無法滿足設計需求。日本 Seiko Epson 公司率 先提出 QMEMS(Quartz with Micro Electro Mechanical Systems)概念, 將半導體製程技術導入石英產業,使石英晶體能做出特殊的結構,以符 合高頻且微型化的市場需求。
現今的石英產業發展上,雖有先前矽晶圓在半導體製程上的經驗做 為基礎,但將半導體晶圓級製程導入石英頻率元件製程,仍然需要投入 大量研究能量來解決所遇到的瓶頸。
本研究將應用感應耦合電漿反應性離子蝕刻系統(Inductively Coupled Plasma-Reactive ION Etching ,ICP-RIE) 對 AT-CUT 石英晶圓進行乾蝕刻 製程,主要可分成四個階段,首先在製程參數固定的條件下,改變兩組 蝕刻氣體的組成比例,找出蝕刻率最高的氣體組合。接下來在機台穩定 製程範圍內,使用田口方法設計直交表實驗,分析各項參數對蝕刻反應 的影響程度。再透過全因子實驗驗證各因子的效應,最後運用機器學習 最佳化製程參數,以獲得高蝕刻率與垂直側壁結構。
摘要(英) Quartz possesses desirable properties such as piezoelectricity, insulation, transparency, high hardness, and thermal stability. These characteristics make it suitable for frequency control components, and quartz crystals exhibit various oscillation modes depending on the cut angle. Among them, AT-cut quartz demonstrates minimal frequency variation with temperature changes, providing precise frequency control. Consequently, AT-cut quartz has become the primary choice for frequency control devices.
In the era of the Internet of Things (IoT) and the rapid development of the 5G industry, electronic products are designed to be compact, lightweight, and feature-rich. Quartz frequency control components play a crucial role in communication devices, automotive applications, and various electronic products by providing stable frequency and clock control.
However, the traditional mechanical manufacturing processes are no longer sufficient to meet the design requirements for miniaturization. To address this challenge, Seiko Epson in Japan pioneered the concept of Quartz with Micro Electro Mechanical Systems (QMEMS) by integrating semiconductor fabrication techniques into the quartz industry. This approach enables the creation of special structures in quartz crystals that meet the market demands for high frequency and miniaturization.
Despite leveraging the experience gained from semiconductor wafer processing, applying semiconductor wafer-level processes to quartz frequency control component fabrication still requires substantial research efforts to overcome existing challenges.
ii
This study aims to apply the Inductively Coupled Plasma-Reactive Ion Etching (ICP-RIE) system to perform dry etching processes on AT-cut quartz wafers. The process can be divided into four stages. Firstly, under fixed process parameters, the composition ratios of two etching gases will be varied to identify the gas combination that yields the highest etching rate. Subsequently, within the stable process range of the equipment, an orthogonal array experiment using the Taguchi method will be conducted to analyze the impact of each parameter on the etching response. The effects of each factor will then be validated through a full-factorial experiment. Finally, machine learning techniques will be utilized to optimize the process parameters, aiming to achieve high etching rates and vertical sidewall structures.
關鍵字(中) ★ AT-cut 石英
★ QMEMS
★ ICP-RIE
★ 田口方法
★ 機器學習
關鍵字(英) ★ AT-cut Quartz
★ QMEMS
★ ICP-RIE
★ Taguchi-method
★ Machine learning
論文目次 摘要...i
Abstract...ii
致謝...iv
目錄...v
圖目錄...viii
表目錄...xii
符號說明...xiii
第一章 緒論...1
1.1研究動機與目的...1
1.2文獻回顧...5
1.2.1石英材料壓電特性與頻率元件...5
1.2.2石英切角與特性...6
1.2.3蝕刻製程應用於石英材料...8
1.2.4ICP-RIE乾蝕刻製程應用於石英材料...11
1.3文章架構...12
第二章 實驗設備與原理...13
2.1 感應耦合電漿離子蝕刻系統(Inductively Coupled Plasma-Reactive
ION Etching, ICP-RIE)...13
2.2 雷射光學顯微鏡(Laser-microscope)...17
2.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)...21
第三章 實驗方法...23
3.1 實驗設計與研究流程...23
3.2 蝕刻氣體組合實驗...24
3.2.1 蝕刻氣體組合與蝕刻率...24
3.2.2 ??/???? 氣體比例與蝕刻率實驗...25
3.2.3 ??/??? 氣體比例與蝕刻率影響實驗...27
3.2.4 討論兩種氣體組合與蝕刻率變化...29
3.3 田口方法實驗...30
3.3.1 田口方法簡介...30
3.3.2 田口直交表實驗設計...31
3.3.3 田口方法實驗結果分析...32
3.4 全因子實驗...35
3.5 運用機器學習最佳化製程參數...40
3.5.1 機器學習簡介...40
3.5.2 SVR (Support Vector Machine Regression )簡介...41
3.5.3 K-Fold cross-Validation 簡介...42
3.5.4 PSO (Particle Swarm Optimization)簡介...43
3.5.5 運用PSO最佳化模型超參數組合...45
3.5.6 運用PSO最佳化製程參數組合...48
第四章 實驗結果討論...51
4.1 惰性氣體濃度對蝕刻率的影響...51
4.2 偏壓電極功率(Bias power)對蝕刻率的影響...52
4.3 總氣體流量(Total Gas flow)對蝕刻率的影響...53
4.4 腔體壓力(Chamber pressure)對蝕刻率的影響...54
4.5 製程參數對蝕刻品質的影響討論...57
4.6 預測蝕刻率之迴歸模型討論...58
第五章 結論與未來展望...59
參考文獻...61
參考文獻 [1] A. M. Nicholson, “Generating and transmitting electric currents”. USA 專利: 2212845, 10 4 1918.
[2] K. L. Lueth, “State of the IoT 2020: 12 billion IoT connections, surpassing non-IoT for the first time,” IoT Analytics, 編號 12, 2020.
[3] 陳梅鈴, “眺望 2020 系列|5G 大頻寬:全球 5G 電信與垂直應用 發展趨勢,” IEK 產業情報網 , 24 10 2019.
[4] EPSON, “Epson crystal device TopInformationQ-MEMS,” EPSON, 2010. [線上]. Available: https://www5.epsondevice.com/en/information/technical_info/qmems/.
[5] TXC 台灣晶技, “產品製程,” TXC 台灣晶技, [線上]. Available: http://www.txccorp.com/index_tw.php?action=c_technology_1&cid=4.
[6] 希華晶體科技, “石英元件的起點,從人工水晶的生長開始,” 希華 晶體科技, [線上]. Available: https://www.siward.com.tw/cn/support/coability/%E4%BA%BA%E5% B7%A5%E6%B0%B4%E6%99%B6.
[7] 津綻石英科技股份有限公司, “石英震盪器原理,” 津綻石英科技股 份有限公司, 2011. [線上]. Available: https://www.nsk.com.tw/quality_tw_4.php.
[8] 岡野庄太郎, 頻率控制石英水晶製品, 1998.
[9] R. D. Mindlin, ““Thickness-Shear and Flexural Vibrations of Crystal
Plates”,” Journal of Applied Physics , pp. 316-323, 1951.
[10] 蕭宏, 半導體製程技術導論, 全華圖書 , 2014.
[11] Yu-Hsiang Tang ; Yu-Hsin Lin ; Ming-Hua Shiao ; Chih-Sheng Yu , “Development of thin quartz glass utilising through-glass-via (TGV) formation by dry etching technology,” IEEE-NEMS , 10 2016.
[12] Yu-Hsiang Tang, Mao-Jung Huang, Yu-Hsin Lin, Ming-Hua Shiao, “Micro Fabrication on Quartz Glass by Inductively,” 科儀新知, 4 2013.
[13] A. B. M. K. Alam, “Etching Process Development of SiO2 Etching Using Inductively,” Department of Physics and Mathematics University of Eastern Finland, 2015.
[14] A. A. Osipova ; S. E. Aleksandrova ; A. A. Osipovb, and V. I. Berezenkoc, “Development of Process for Fast Plasma-Chemical Through Etching of Single-Crystal Quartz in SF6/O2 Gas Mixture,” INORGANIC SYNTHESIS AND INDUSTRIAL, 23 3 2018.
[15] Artem A. Osipov,Gleb A. Iankevich,Sergey E. Alexandrov, “Monocrystalline Quartz ICP Etching: Road to High-Temperature Dry Etching,” Plasma Chemistry & Plasma Processing, 1 2020.
[16] Gigalane, “ICP Etch system,Seniconductor Equipment Manufacturing,Products,” Gigalane, 2018. [線上]. Available: http://www.gigalane.com/cn/product_sem01_06.html.
[17] Keyence, “Keyence VK-X3000,” Keyence, 2023. [線上]. Available: https://www.keyence.com.tw/products/microscope/laser-microscope/vk- x3000/index_pr.jsp.
[18] 閎康科技, “SU8220,材料分析,SEM,” 閎康科技, 2020. [線上]. Available: https://www.matek.com/zh-TW/services/index/SEM.
[19] 李輝煌, 田口方法: 品質設計的原理與實務, 高立圖書有限公司, 2011.
[20] H.-T. LIN, LEARNING FROM DATA, 全華圖書 , 2012.
[21] M. Stone, “Cross-Validatory Choice and Assessment of Statistical Predictions,” Journal of the Royal Statistical Society. Series B (Methodological), pp. 111-147 , 1974.
[22] Kennedy, J. and Eberhart, R., “ELMAN Neural Network with Modified Grey Wolf Optimizer for Enhanced Wind Speed Forecasting,” 於 IEEE International Conference on Neural Networks, 1995.
[23] 徐國瑞, “DeltaMOOCx 課程,” 台達電子文教基金會, 2021. [線上]. Available: https://www.delta-foundation.org.tw/project/17.
[24] 陳威宇, “以粒子群演算法求解流線型製造單元排程,” 2011.
[25] K. Nojiri, Dry Etching Technology for Semiconductors, Springer, 2015.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2023-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明