博碩士論文 110323610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.189.185.221
姓名 范亞迪(ADITIYA FAJAR BEKTI)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Thermodynamic Assessment of PCFC-GT-ORC Hybrid System with External Steam Reformer for Various Fuels)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-30以後開放)
摘要(中) 本研究旨在研究質子陶瓷燃料電池 (PCFC) 與微型燃氣輪機 (MGT) 和有機朗肯循環 (ORC) 混合系統相結合,外部重整器由各種燃料提供燃料。 本研究使用乙醇、甲醇、氨、丙烷和辛烷分析了五種優化系統配置。 燃料類型的選擇是根據其重整溫度級別確定的。 每個優化系統配置的想法主要集中在煙道氣利用作為重整器組件的主要熱源,因此可以優化氫氣生產。 熱電聯產 (CHP) 系統在本研究中也作為系統靈活性的代表進行了評估。 接下來,還分析了空氣和燃料流量、燃料利用率 (Uf) 和陽極廢氣再循環率 (AOGR) 等幾個參數。 Thermolib 用於使用從參考文獻中獲得的輸入參數構建系統。
與其他配置相比,氨系統(配置 3)的結果顯示出最出色的系統性能。 達到的最大系統能量和㶲效率分別為 81.44% 和 77.24%,總㶲損失為 36.62 kW,這是最低的㶲損失百分比,從初始㶲輸入開始,整個循環中只有 22.76% 的㶲被破壞。 事實證明,熱電聯產系統可以將氨系統的整體系統能效提高高達 85.55%。 同時,與 ORC 系統相比,使用 CHP 系統的所有系統配置的㶲效率往往降低 2%。 氨系統熱回收蒸汽產生器(HRSG)的㶲效率最高可達68.5%。
參數變化結果表明,當 AOGR 比增加時,PCFC 功率輸出也會增加。 它從根本上與流入陽極的大量氫氣有關。 相反,當渦輪進口溫度和燃燒室反應物降低時,相應地降低 GT 功率輸出。 結果表明,與燃料電池功率的增加相比,GT 功率的減少相對較小; 因此,系統效率隨著 AOGR 比率的增加而增加。 此外,安裝 AOGR 可以使 PCFC-MGT-ORC 混合系統在各種 Uf 變化下以最大功率工作。
對 Uf 變化的研究表明,該參數對於 PCFC、MGT 和 ORC 的能量分配至關重要,其中電池功率輸出增加,但 MGT 功率輸出隨著 Uf 的增加而下降。 結果還表明,混合 PCFC-MGT-ORC 系統可以在具有高 AOGR 率的低 Uf 下產生最大功率,而混合系統可以在沒有 AOGR 的情況下在高 Uf 下產生峰值功率。
這項工作通過 (i) 確定使用各種燃料的 PCFC-MGT-ORC 混合系統中的適當配置,(ii) 了解基於熱量或電力需求的系統靈活性,(iii) 了解陽極關閉的影響,使科學界能夠 氣體再循環 (AOGR) 對系統性能的影響,以及 (iv) 選擇合理的燃料、S/C、Uf、空氣流量、燃料流量。
摘要(英) This study aims to investigate protonic ceramic fuel cell (PCFC) combined with micro gas turbine (MGT) and Organic Rankine Cycle (ORC) hybrid systems with external reformer fueled by various fuels. Five optimized system configuration has analyzed in this study using ethanol, methanol, ammonia, propane, and octane. The fuel type selection was determined based on its reforming temperature level. The idea of each optimized system configuration is mainly focus on flue gas utilization as primary heat source for reformer component so the hydrogen production can be optimized. The combine heat and power (CHP) system is also been evaluated in present study as the representation of system flexibility. Next, several parameters such as air and fuel flow rate, fuel utilization factor (Uf), and anode off-gas recycling ratio (AOGR) are also analyzed. Thermolib is employed to build the system with input parameters obtained from references.
The results in ammonia system (configuration 3) show most outstanding system performance compared with other configuration. The maximum system energy and exergy efficiency achieved is 81.44% and 77.24%, respectively with a total exergy destruction of 36.62 kW which is the lowest exergy destruction percentage, with only 22.76% of exergy destroyed across the whole cycle from its initial exergy input. The CHP system proven can enhanced the overall system energy efficiency for up to 85.55% for ammonia system. Meanwhile, the exergy efficiency tends to decrease by 2% for all system configuration using CHP system compared with ORC system. The ammonia system heat recovery steam generator (HRSG) exergy efficiency is the highest up to 68.5%.
The parameter variation results reveal that when the AOGR ratio increases, so does the PCFC power output. It is fundamentally related to massive hydrogen flowing into the anode. In contrast, when turbine inlet temperature and combustor reactant decrease, correspondingly decreases MGT power output. The results indicate that the increase in fuel cell power is dominant than the decrease of MGT power; hence, system efficiency increases as the AOGR ratio grows. Furthermore, installing AOGR can keep a PCFC-MGT-ORC hybrid system working at maximum power under various Uf variations.
The investigation of Uf variations reveals that this parameter is critical in energy distribution into PCFC, MGT, and ORC, in which cell power output increases but MGT power output drops as Uf increases. The results also show that a hybrid PCFC-MGT-ORC system can generate maximum power at low Uf with a high AOGR rate, and a hybrid system can produce peak power at high Uf without AOGR.
This work enables the scientific community by (i) determining an appropriate configuration in a PCFC-MGT-ORC hybrid system using various fuels, (ii) understanding system flexibility based on heat or power demand, (iii) understanding the effect of anode-off gas recycling (AOGR) on system performance, and (iv) selecting a reasonable fuel, S/C, Uf, air flow rate, fuel flow rate.
關鍵字(中) ★ 外部重整器
★ 質子傳導固態氧化物燃料電池 (PCFC)
★ 微型燃氣輪機
★ 有機朗肯循環
★ 熱電聯產
★ 混合系統建模
★ 陽極廢氣回收
★ Matlab Simulink
關鍵字(英) ★ External reforming
★ Proton Conducting Solid Oxide Fuel Cell (PCFC)
★ Micro Gas Turbine
★ Organic Rankine Cycle
★ Combine Heat and Power
★ Hybrid System Modeling
★ Anode-off gas recycle
★ Matlab Simulink
論文目次 CHINESE ABSTRACT i
ABSTRACT ii
ACKNOWLEDGEMENTS iv
TABLE OF CONTENT v
LIST OF FIGURES vii
LIST OF TABLES xi
LIST OF SYMBOLS xii
CHAPTER 1 1
1.1 Backgrounds 1
1.2 Motivation 3
1.3 Literature Review 3
CHAPTER 2 8
2.1 PCFC Theoretical Principle 8
2.2 I-V Curve Modeling 9
2.2.1 Activation polarization 10
2.2.2. Ohmic polarization 10
2.2.3 Concentration polarization 11
2.3 Component Modeling 13
2.3.1 Micro Gas Turbine 13
2.3.2 Compressor 14
2.3.3 Combustor 14
2.3.4 The 3-Way Valve (Splitter) 15
2.3.5 Mixer 15
2.3.6 Heat exchanger 16
2.3.7 Pump 16
2.3.8 PCFC Stack 17
2.4 Exergy Definition 17
2.5 Efficiency Definition 18
CHAPTER 3 20
3.1 Procedure 20
3.2 Validation 21
3.3 Modeling Assumption and Operating Conditions 24
3.4 System Configuration 26
3.4.1 PCFC-MGT-ORC fueled by Ethanol (Configuration 1) 26
3.4.2 PCFC-MGT-ORC fueled by Methanol (Configuration 2) 30
3.4.3 PCFC-MGT-ORC fueled by Ammonia (Configuration 3) 33
3.4.4 PCFC-MGT-ORC fueled by Propane (Configuration 4) 37
3.4.5 PCFC-MGT-ORC fueled by Octane (Configuration 5) 40
CHAPTER 4 44
4.1 Analysis of PCFC-MGT-ORC Hybrid System with External Reformer Fueled by Ethanol, Methanol, Ammonia, Propane and Octane. 44
4.1.1 Case Comparison using same PCFC condition (based on design condition Uf = 0.85, air flow rate = 2.92 mol∙s-1, AOGR rate = 0 %) 46
4.1.2 Case comparison using same energy input (based on design condition Uf = 0.85, air flow rate = 2.92 mol∙s-1, AOGR rate = 0 %) 95
4.2 Comparison of ORC utilization and CHP utilization (based on design condition Uf = 0.85, air flow rate = 2.92 mol∙s-1, AOGR rate = 0 %) 99
4.3 Parametric Study 107
4.3.1 Effect of fuel flow rate and air flow rate 107
4.3.2 Effect of Anode-Off Gas Recycle (AOGR) and Utilization Factor (Uf) 119
CHAPTER 5 129
5.1 Conclusions 129
5.2 Suggestions 130
REFERENCE 131
APPENDIX 136
參考文獻 REFERENCE

[1] T. Zhang and H. Yang, “High Efficiency Plants and Building Integrated Renewable Energy Systems,” Handb. Energy Effic. Build. A Life Cycle Approach, pp. 441–595, Jan. 2019, doi: 10.1016/B978-0-12-812817-6.00040-1.
[2] T. Yusaf et al., “Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach,” Appl. Sci., vol. 12, no. 2, Jan. 2022, doi: 10.3390/app12020781.
[3] L. Q. Le et al., “Proton-conducting ceramic fuel cells: Scale up and stack integration,” J. Power Sources, vol. 482, Jan. 2021, doi: 10.1016/j.jpowsour.2020.228868.
[4] C. Duan, J. Huang, N. Sullivan, and R. O’Hayre, “Proton-conducting oxides for energy conversion and storage,” Appl. Phys. Rev., vol. 7, no. 1, p. 011314, Mar. 2020, doi: 10.1063/1.5135319.
[5] J. Basbus et al., “Study of BaCe0.4Zr0.4Y0.2O3-δ/BaCe0.8Pr0.2O3-δ (BCZY/BCP) bilayer membrane for Protonic Conductor Solid Oxide Fuel Cells (PC-SOFC),” Int. J. Hydrogen Energy, vol. 45, no. 8, pp. 5481–5490, Feb. 2020, doi: 10.1016/j.ijhydene.2019.06.164.
[6] M. Chen, M. Zhou, Z. Liu, and J. Liu, “A comparative investigation on protonic ceramic fuel cell electrolytes BaZr0.8Y0.2O3-δ and BaZr0.1Ce0.7Y0.2O3-δ with NiO as sintering aid,” Ceram. Int., vol. 48, no. 12, pp. 17208–17216, Jun. 2022, doi: 10.1016/j.ceramint.2022.02.278.
[7] P. Kumar and O. Singh, “Thermoeconomic analysis of SOFC-GT-VARS-ORC combined power and cooling system,” Int. J. Hydrogen Energy, vol. 44, no. 50, pp. 27575–27586, Oct. 2019, doi: 10.1016/J.IJHYDENE.2019.08.198.
[8] L. van Biert, K. Visser, and P. V. Aravind, “A comparison of steam reforming concepts in solid oxide fuel cell systems,” Appl. Energy, vol. 264, p. 114748, Apr. 2020, doi: 10.1016/J.APENERGY.2020.114748.
[9] M. Powell, K. Meinhardt, V. Sprenkle, L. Chick, and G. McVay, “Demonstration of a highly efficient solid oxide fuel cell power system using adiabatic steam reforming and anode gas recirculation,” J. Power Sources, vol. 205, pp. 377–384, May 2012, doi: 10.1016/J.JPOWSOUR.2012.01.098.
[10] L. van Biert, M. Godjevac, K. Visser, and P. V. Aravind, “Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments,” Appl. Energy, vol. 250, pp. 976–990, Sep. 2019, doi: 10.1016/J.APENERGY.2019.05.053.
[11] M. Cho, Y. Kim, and H. Ho Song, “Solid oxide fuel cell–internal combustion engine hybrid system utilizing an internal combustion engine for anode off-gas recirculation, external reforming, and additional power generation,” Appl. Energy, vol. 328, p. 120146, Dec. 2022, doi: 10.1016/j.apenergy.2022.120146.
[12] M. T. Mehran et al., “Performance characteristics of a robust and compact propane-fueled 150 W-class SOFC power-generation system,” Int. J. Hydrogen Energy, vol. 44, no. 12, pp. 6160–6171, Mar. 2019, doi: 10.1016/J.IJHYDENE.2019.01.076.
[13] D. Saebea, A. Arpornwichanop, and Y. Patcharavorachot, “Thermodynamic analysis of a proton conducting SOFC integrated system fuelled by different renewable fuels,” Int. J. Hydrogen Energy, vol. 46, no. 20, pp. 11445–11457, Mar. 2021, doi: 10.1016/j.ijhydene.2020.07.264.
[14] P.-C. Cheng et al., “Carbon resistant Ni1-xCux-BCZY anode for methane-fed protonic ceramic fuel cell,” Int. J. Hydrogen Energy, vol. 48, no. 30, pp. 11455–11462, Apr. 2023, doi: 10.1016/j.ijhydene.2022.08.049.
[15] Y. Bu et al., “A highly efficient composite cathode for proton-conducting solid oxide fuel cells,” J. Power Sources, vol. 451, p. 227812, Mar. 2020, doi: 10.1016/j.jpowsour.2020.227812.
[16] M. Deng, J. Liu, X. Zhang, J. Li, and L. Fu, “Energy and Parameter Analysis of SOFC System for Hydrogen Production from Methane Steam Reforming,” J. Therm. Sci., vol. 31, no. 6, pp. 2088–2110, Nov. 2022, doi: 10.1007/s11630-022-1676-8.
[17] Sasmoko, S.-W. Lee, M. Bhavanari, W. Wijayanti, N. Osman, and C.-J. Tseng, “System analysis of a protonic ceramic fuel cell and gas turbine hybrid system with methanol reformer,” Int. J. Hydrogen Energy, vol. 48, no. 30, pp. 11421–11430, Apr. 2023, doi: 10.1016/j.ijhydene.2022.06.220.
[18] M. A. Emadi, N. Chitgar, O. A. Oyewunmi, and C. N. Markides, “Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery,” Appl. Energy, vol. 261, p. 114384, Mar. 2020, doi: 10.1016/j.apenergy.2019.114384.
[19] S. Sasmoko et al., “Thermodynamic Analysis of Three Internal Reforming Protonic Ceramic Fuel Cell-Gas Turbine Hybrid Systems,” Appl. Sci., vol. 12, no. 21, p. 11140, Nov. 2022, doi: 10.3390/app122111140.
[20] S. Ghorbani, M. H. Khoshgoftar-Manesh, M. Nourpour, and A. M. Blanco-Marigorta, “Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system,” Energy, vol. 206, p. 118151, Sep. 2020, doi: 10.1016/j.energy.2020.118151.
[21] T. Zhang, H. Zhao, H. Du, and H. Wang, “Thermodynamic performance study of a novel cogeneration system combining solid oxide fuel cell, gas turbine, organic Rankine cycle with compressed air energy storage,” Energy Convers. Manag., vol. 249, p. 114837, Dec. 2021, doi: 10.1016/j.enconman.2021.114837.
[22] A. Entezari, M. Bahari, A. Aslani, S. Ghahremani, and F. Pourfayaz, “Systematic analysis and multi-objective optimization of integrated power generation cycle for a thermal power plant using Genetic algorithm,” Energy Convers. Manag., vol. 241, p. 114309, Aug. 2021, doi: 10.1016/j.enconman.2021.114309.
[23] R. Zeng, B. Guo, X. Zhang, H. Li, and G. Zhang, “Study on thermodynamic performance of SOFC-CCHP system integrating ORC and double-effect ARC,” Energy Convers. Manag., vol. 242, p. 114326, Aug. 2021, doi: 10.1016/j.enconman.2021.114326.
[24] Z. Wang, H. Chen, R. Xia, F. Han, Y. Ji, and W. Cai, “Energy, exergy and economy (3E) investigation of a SOFC-GT-ORC waste heat recovery system for green power ships,” Therm. Sci. Eng. Prog., vol. 32, p. 101342, Jul. 2022, doi: 10.1016/j.tsep.2022.101342.
[25] P. Kumar, T. Choudhary, and M. Z. Ansari, “Thermodynamic assessment of a novel SOFC and intercooled GT integration with ORC: Energy and exergy analysis,” Therm. Sci. Eng. Prog., vol. 34, p. 101411, Sep. 2022, doi: 10.1016/j.tsep.2022.101411.
[26] A. Kasaeian, H. Hadavi, Y. Amirhaeri, and F. Pourfayaz, “Thermodynamic analysis of a wood chips-based cycle integrated with solid oxide fuel cell,” Renew. Energy, vol. 195, pp. 1174–1193, Aug. 2022, doi: 10.1016/j.renene.2022.06.101.
[27] M. H. Khoshgoftar Manesh, S. Ghorbani, and A. M. Blanco-Marigorta, “Optimal design and analysis of a combined freshwater-power generation system based on integrated solid oxide fuel cell-gas turbine-organic Rankine cycle-multi effect distillation system,” Appl. Therm. Eng., vol. 211, p. 118438, Jul. 2022, doi: 10.1016/j.applthermaleng.2022.118438.
[28] H. You, Y. Xiao, J. Han, A. Lysyakov, and D. Chen, “Thermodynamic, exergoeconomic and exergoenvironmental analyses and optimization of a solid oxide fuel cell-based trigeneration system,” Int. J. Hydrogen Energy, Apr. 2023, doi: 10.1016/j.ijhydene.2023.03.183.
[29] X. Wang, X. Lv, and Y. Weng, “Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops,” Energy, vol. 197, p. 117213, Apr. 2020, doi: 10.1016/j.energy.2020.117213.
[30] L. Barelli, G. Bidini, G. Cinti, and P. A. Ottaviano, “Solid oxide fuel cell systems in hydrogen-based energy storage applications: Performance assessment in case of anode recirculation,” J. Energy Storage, vol. 54, p. 105257, Oct. 2022, doi: 10.1016/j.est.2022.105257.
[31] J.-H. Zhang, L.-B. Lei, D. Liu, F.-Y. Zhao, M. Ni, and F. Chen, “Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage,” J. Power Sources, vol. 400, pp. 333–340, Oct. 2018, doi: 10.1016/j.jpowsour.2018.08.038.
[32] F. Dalena et al., “Steam Reforming of Bioethanol Using Metallic Catalysts on Zeolitic Supports: An Overview,” Catalysts, vol. 12, no. 6, p. 617, Jun. 2022, doi: 10.3390/catal12060617.
[33] J. A. Wrubel, J. Gifford, Z. Ma, H. Ding, D. Ding, and T. Zhu, “Modeling the performance and faradaic efficiency of solid oxide electrolysis cells using doped barium zirconate perovskite electrolytes,” Int. J. Hydrogen Energy, vol. 46, no. 21, pp. 11511–11522, Mar. 2021, doi: 10.1016/j.ijhydene.2021.01.043.
[34] D. Gostovic, J. R. Smith, D. P. Kundinger, K. S. Jones, and E. D. Wachsman, “Three-Dimensional Reconstruction of Porous LSCF Cathodes,” Electrochem. Solid-State Lett., vol. 10, no. 12, p. B214, 2007, doi: 10.1149/1.2794672.
[35] S. McAllister, J.-Y. Chen, and A. C. Fernandez-Pello, Fundamentals of Combustion Processes. New York, NY: Springer New York, 2011. doi: 10.1007/978-1-4419-7943-8.
[36] R. Rivero and M. Garfias, “Standard chemical exergy of elements updated,” Energy, vol. 31, no. 15, pp. 3310–3326, Dec. 2006, doi: 10.1016/j.energy.2006.03.020.
指導教授 曾重仁(Tseng, Chung-Jen) 審核日期 2023-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明