博碩士論文 110323136 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:18.217.144.32
姓名 陳宗賢(Tsung-Hsien Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究
(A study on the Controllability and Variability of Synthesizing Molybdenum Disulfide on Silicon-Based Materials by Chemical Vapor Deposition)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為了生產高品質的電晶體通道層二硫化鉬,已經提出了多種製備方法,例如機械剝離、物理氣相沉積、化學氣相沉積、原子層沉積和有機金屬化學氣相沉積等。其中,化學氣相沉積法合成的二硫化鉬薄膜具有較好的品質和電傳輸特性,因此被廣泛使用。雖然化學氣相沉積法可以生產出面積較大且高品質的二硫化鉬薄膜,但其中許多因素可能導致薄膜品質不佳,例如原子級缺陷、晶界和雜質摻入等因素,進而導致光學和電學性質大幅下降。
相較於合成於結晶性藍寶石基板,直接合成二硫化鉬於非晶基板(如氧化矽或氮化矽)雖有利於整合後段相容製程,但要達到高結晶合成品質仍存在瓶頸。本研究通過調節成長系統的參數,整理出各種環境參數的變化和影響,並實現了大面積高結晶品質的單晶二硫化鉬的生長。研究結果顯示,在成長部分由主導的溫度、壓力、流速等主要條件下若在適當區間可初步成長出二硫化鉬奈米顆粒,再搭配前驅物比例及細部調整則可使單晶尺寸達到10 µm以上,同時其拉曼分析結果顯示為單層,透過光致發光分析其結晶品質也可以得到 58 meV的高結晶品質。
此外,本研究也比較了不同的基板表面處理法對於生長時的成核與摻雜問題,並獲得以溶劑丙酮超音波震清法處理,可達到高潔淨度,且同時可使成核密度由未處理前的10 site/µm2降低至處理後為0.04 site/µm2。金陣列點位試驗中也成功解決了成核無序的限制,透過較低的介面能使得二硫化鉬趨向在陣列點位周圍異質成核,同時抑制均質成核的發生,達到選擇性成核的效果。
摘要(英) Various preparation methods have been proposed to produce high-quality molybdenum disulfide (MoS2) transistor channel layers, such as mechanical exfoliation, physical vapor deposition, chemical vapor deposition, molecular layer deposition, and metal-organic chemical vapor deposition. Among them, MoS2 thin films synthesized by chemical vapor deposition (CVD) exhibit better quality and electrical transport properties, making them widely used. Although the CVD method can produce large-area and high-quality MoS2 thin films, several factors can lead to poor film quality, such as atomic-scale defects, grain boundaries, and impurity doping, resulting in significant degradation of optical and electrical properties.
Compared to synthesizing MoS2 on crystalline sapphire substrates, direct synthesis on amorphous substrates(such as silicon oxide or silicon nitride) is advantageous for integrating into the back-end of line processes. However, there are still bottlenecks in achieving high-quality crystalline synthesis. In this study, by adjusting the parameters of the growth system, the variations and effects of various parameters were organized, leading to the achievement of large-area, high-crystallinity single-crystal MoS2 growth. The research results indicate that under the main conditions dominated by temperature, pressure, flow rate, etc., if within an appropriate range, MoS2 nanoparticles can be preliminarily grown. By combining precursor proportions and fine adjustments, single-crystal sizes can reach 10 µm or more. Raman analysis confirms the flake is single-layer, and photoluminescence analysis reveals a high crystalline quality of 58 meV.
Additionally, this study compared different substrate surface treatment methods to solve the nucleation and doping issues during growth. It was found that the use of the solvent acetone with an ultrasonic cleaning method can achieve high cleanliness and reduced the nucleation density from 10 sites/µm2 to 0.04 sites/µm2 after acetone clean treatment. The gold array test successfully addressed the limitations of nucleation disorder. By employing lower interfacial energy, MoS2 tended to nucleate heterogeneously around the array points, while suppressing homogeneous nucleation, achieving a selective nucleation effect.
關鍵字(中) ★ 二維材料
★ 過渡金屬二硫屬化物
★ 二硫化鉬
★ 化學氣相沉積
關鍵字(英) ★ 2D materials
★ TMDCs
★ Molybdenum disulfide
★ Chemical vapor deposition
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
1 第一章 緒論 1
2 第二章 文獻回顧與研究動機 4
2-1 二維材料發展及分類 4
2-1-1 石墨烯 4
2-1-2 黑磷 6
2-1-3 六方氮化硼 7
2-1-4 過渡金屬碳/氮化物 8
2-1-5 過渡金屬二硫屬化物 9
2-2 二硫化鉬優勢及未來應用 12
2-3 二硫化鉬製備方法 13
2-3-1 化學氣相沉積 14
2-3-2 原子層沉積 15
2-3-3 物理氣相沉積 16
2-4 化學氣相沉積二硫化鉬的限制與解決方案 17
2-4-1 基板選擇 17
2-4-2 選擇性區域成長 19
2-4-3 表面預處理 21
2-5 研究動機 24
3 第三章 實驗架構及流程 26
3-1 實驗架構 26
3-2 實驗藥品與儀器 27
3-2-1 實驗藥品 27
3-2-2 實驗儀器及原理 27
3-3 實驗流程 29
3-3-1 陣列點位沉積 29
3-3-2 沉積之點位退火製程 29
3-3-3 基板表面處理 29
3-3-4 化學氣相沉積與合成條件設置 30
3-3-5 二硫化鉬材料分析 32
4 第四章 結果與討論 38
4-1 生長二硫化鉬之製程條件 38
4-1-1 反應壓力之調整 39
4-1-2 反應溫度之調整 42
4-1-3 載流氣體流量調整 44
4-1-4 前驅物比例關係 47
4-1-5 參數重複性與品質 51
4-2 基板前處理之影響 54
4-3 人工陣列點位之成核控制效果 57
5 第五章 結論與未來工作 59
5-1 結論 59
5-2 未來工作 59
參考文獻 60
參考文獻 [1] ICinsight, https://www.icinsights.com/
[2] IRSD 2021, https://irds.ieee.org/editions/2021
[3] S.-K. Su, C.-P. Chuu, M.-Y. Li, C.-C. Cheng, H.-S. P. Wong, and L.-J. Li, "Layered semiconducting 2D materials for future transistor applications," Small Structures, vol. 2, no. 5, p. 2000103, 2021.
[4] IRSD 2018, https://irds.ieee.org/editions/2018
[5] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature nanotechnology, vol. 6, no. 3, pp. 147-150, 2011.
[6] S. B. Desai et al., "MoS2 transistors with 1-nanometer gate lengths," Science, vol. 354, no. 6308, pp. 99-102, 2016.
[7] F. Wu et al., "Vertical MoS2 transistors with sub-1-nm gate lengths," Nature, vol. 603, no. 7900, pp. 259-264, 2022.
[8] W. Zhang, Z. Huang, W. Zhang, and Y. Li, "Two-dimensional semiconductors with possible high room temperature mobility," Nano Research, vol. 7, pp. 1731-1737, 2014.
[9] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS2: a new direct-gap semiconductor," Physical review letters, vol. 105, no. 13, p. 136805, 2010.
[10] X. Xu et al., "Growth of 2D materials at the wafer scale," Advanced Materials, vol. 34, no. 14, p. 2108258, 2022.
[11] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-669, 2004.
[12] K. S. Novoselov, V. I. Fal′ ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene," Nature, vol. 490, no. 7419, pp. 192-200, 2012.
[13] P. V. Pham et al., "2D heterostructures for ubiquitous electronics and optoelectronics: principles, opportunities, and challenges," Chemical Reviews, vol. 122, no. 6, pp. 6514-6613, 2022.
[14] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature materials, vol. 6, no. 3, pp. 183-191, 2007.
[15] L. Liao et al., "Sub-100 nm channel length graphene transistors," Nano letters, vol. 10, no. 10, pp. 3952-3956, 2010.
[16] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphene-based supercapacitor with an ultrahigh energy density," Nano letters, vol. 10, no. 12, pp. 4863-4868, 2010.
[17] F. Xia, T. Mueller, Y.-m. Lin, A. Valdes-Garcia, and P. Avouris, "Ultrafast graphene photodetector," Nature nanotechnology, vol. 4, no. 12, pp. 839-843, 2009.
[18] A. W. Robertson and J. H. Warner, "Atomic resolution imaging of graphene by transmission electron microscopy," Nanoscale, vol. 5, no. 10, pp. 4079-4093, 2013.
[19] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, "Production and processing of graphene and 2d crystals," Materials today, vol. 15, no. 12, pp. 564-589, 2012.
[20] H. Liu et al., "Phosphorene: an unexplored 2D semiconductor with a high hole mobility," ACS nano, vol. 8, no. 4, pp. 4033-4041, 2014.
[21] L. Li et al., "Black phosphorus field-effect transistors," Nature nanotechnology, vol. 9, no. 5, pp. 372-377, 2014.
[22] D. Shao, W. Lu, H. Lv, and Y. Sun, "Electron-doped phosphorene: a potential monolayer superconductor," Europhysics Letters, vol. 108, no. 6, p. 67004, 2014.
[23] J. L. Zhang et al., "2D phosphorene: epitaxial growth and interface engineering for electronic devices," Advanced Materials, vol. 30, no. 47, p. 1802207, 2018.
[24] V. Eswaraiah, Q. Zeng, Y. Long, and Z. Liu, "Black phosphorus nanosheets: synthesis, characterization and applications," Small, vol. 12, no. 26, pp. 3480-3502, 2016.
[25] J. Gao, G. Zhang, and Y.-W. Zhang, "The critical role of substrate in stabilizing phosphorene nanoflake: A theoretical exploration," Journal of the American Chemical Society, vol. 138, no. 14, pp. 4763-4771, 2016.
[26] J. O. Island, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, "Environmental instability of few-layer black phosphorus," 2D Materials, vol. 2, no. 1, p. 011002, 2015.
[27] D. Golberg et al., "Boron nitride nanotubes and nanosheets," ACS nano, vol. 4, no. 6, pp. 2979-2993, 2010.
[28] J. Wang, F. Ma, and M. Sun, "Graphene, hexagonal boron nitride, and their heterostructures: properties and applications," RSC advances, vol. 7, no. 27, pp. 16801-16822, 2017.
[29] J. Yin et al., "Boron nitride nanostructures: fabrication, functionalization and applications," Small, vol. 12, no. 22, pp. 2942-2968, 2016.
[30] K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, "Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications," Journal of Materials Chemistry C, vol. 5, no. 46, pp. 11992-12022, 2017.
[31] Y. Gogotsi and Q. Huang, "MXenes: two-dimensional building blocks for future materials and devices," vol. 15, ed: ACS Publications, 2021, pp. 5775-5780.
[32] M. Naguib et al., "Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2," Advanced materials, vol. 23, no. 37, pp. 4248-4253, 2011.
[33] L. Toth, Transition metal carbides and nitrides. Elsevier, 2014.
[34] M. Naguib, M. W. Barsoum, and Y. Gogotsi, "Ten years of progress in the synthesis and development of MXenes," Advanced Materials, vol. 33, no. 39, p. 2103393, 2021.
[35] B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, "2D metal carbides and nitrides (MXenes) for energy storage," Nature Reviews Materials, vol. 2, no. 2, pp. 1-17, 2017.
[36] M. R. Vazirisereshk, A. Martini, D. A. Strubbe, and M. Z. Baykara, "Solid lubrication with MoS2: a review," Lubricants, vol. 7, no. 7, p. 57, 2019
[37] K. S. Novoselov et al., "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences, vol. 102, no. 30, pp. 10451-10453, 2005.
[38] J. Gao, B. Li, J. Tan, P. Chow, T.-M. Lu, and N. Koratkar, "Aging of transition metal dichalcogenide monolayers," ACS nano, vol. 10, no. 2, pp. 2628-2635, 2016.
[39] S. Kang et al., "2D semiconducting materials for electronic and optoelectronic applications: potential and challenge," 2D Materials, vol. 7, no. 2, p. 022003, 2020.
[40] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature nanotechnology, vol. 7, no. 11, pp. 699-712, 2012.
[41] W. Zhang, Z. Huang, W. Zhang, and Y. Li, "Two-dimensional semiconductors with possible high room temperature mobility," Nano Research, vol. 7, pp. 1731-1737, 2014.
[42] D. Voiry, A. Mohite, and M. Chhowalla, "Phase engineering of transition metal dichalcogenides," Chemical Society Reviews, vol. 44, no. 9, pp. 2702-2712, 2015.
[43] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, "Recent development of two-dimensional transition metal dichalcogenides and their applications," Materials Today, vol. 20, no. 3, pp. 116-130, 2017
[44] Y. Yoon, K. Ganapathi, and S. Salahuddin, "How good can monolayer MoS2 transistors be?," Nano letters, vol. 11, no. 9, pp. 3768-3773, 2011.
[45] H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, "Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances," Applied Physics Letters, vol. 100, no. 12, p. 123104, 2012.
[46] Z. Yin et al., "Single-layer MoS2 phototransistors," ACS nano, vol. 6, no. 1, pp. 74-80, 2012.
[47] R. Yang et al., "Ternary content-addressable memory with MoS2 transistors for massively parallel data search," Nature Electronics, vol. 2, no. 3, pp. 108-114, 2019.
[48] C. Liu, X. Yan, X. Song, S. Ding, D. W. Zhang, and P. Zhou, "A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications," Nature nanotechnology, vol. 13, no. 5, pp. 404-410, 2018.
[49] Y. Park et al., "Few-layer MoS2 photodetector arrays for ultrasensitive on-chip enzymatic colorimetric analysis," ACS nano, vol. 15, no. 4, pp. 7722-7734, 2021.
[50] S. Hwangbo, L. Hu, A. T. Hoang, J. Y. Choi, and J.-H. Ahn, "Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor," Nature Nanotechnology, vol. 17, no. 5, pp. 500-506, 2022.
[51] H. Li, J. K. Huang, Y. Shi, and L. J. Li, "Toward the growth of high mobility 2D transition metal dichalcogenide semiconductors," Advanced Materials Interfaces, vol. 6, no. 24, p. 1900220, 2019.
[52] M. Chen et al., "Nanoimprint-assisted shear exfoliation (NASE) for producing multilayer MoS2 structures as field-effect transistor channel arrays," ACS nano, vol. 9, no. 9, pp. 8773-8785, 2015
[53] P. Zhang et al., "Electrochemically Exfoliated High‐Quality 2H‐MoS2 for Multiflake Thin Film Flexible Biosensors," Small, vol. 15, no. 23, p. 1901265, 2019.
[54] L. K. Tan, B. Liu, J. H. Teng, S. Guo, H. Y. Low, and K. P. Loh, "Atomic layer deposition of a MoS2 film," Nanoscale, vol. 6, no. 18, pp. 10584-10588, 2014.
[55] J. J. Pyeon et al., "Wafer-scale growth of MoS2 thin films by atomic layer deposition," Nanoscale, vol. 8, no. 20, pp. 10792-10798, 2016.
[56] A. Valdivia, D. J. Tweet, and J. F. Conley Jr, "Atomic layer deposition of two dimensional MoS2 on 150 mm substrates," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 34, no. 2, p. 021515, 2016.
[57] S. El Kazzi et al., "MoS2 synthesis by gas source MBE for transition metal dichalcogenides integration on large scale substrates," Journal of Applied Physics, vol. 123, no. 13, p. 135702, 2018.
[58] H.-S. Kim, M. D. Kumar, J. Kim, and D. Lim, "Vertical growth of MoS2 layers by sputtering method for efficient photoelectric application," Sensors and Actuators A: Physical, vol. 269, pp. 355-362, 2018.
[59] T. Ohashi et al., "Multi-layered MoS2 film formed by high-temperature sputtering for enhancement-mode nMOSFETs," Japanese Journal of Applied Physics, vol. 54, no. 4S, p. 04DN08, 2015.
[60] S. Hussain et al., "Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method," Scientific reports, vol. 6, no. 1, p. 30791, 2016.
[61] J. Jeon et al., "Layer-controlled CVD growth of large-area two-dimensional MoS2 films," Nanoscale, vol. 7, no. 5, pp. 1688-1695, 2015.
[62] M. Park, Y. J. Park, X. Chen, Y. K. Park, M. S. Kim, and J. H. Ahn, "MoS2‐based tactile sensor for electronic skin applications," Advanced Materials, vol. 28, no. 13, pp. 2556-2562, 2016.
[63] J. Zhang et al., "Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes," ACS nano, vol. 8, no. 6, pp. 6024-6030, 2014.
[64] X. Yang et al., "Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application," Science China Materials, vol. 3, no. 59, pp. 182-190, 2016.
[65] J. Bae and Y. Yoo, "A Novel Carbon-Assisted Chemical Vapor Deposition Growth of Large-Area Uniform Monolayer MoS2 and WS2," Nanomaterials, vol. 11, no. 9, p. 2423, 2021.
[66] D. Alameri et al., "Mask-free patterning and selective CVD-growth of 2D-TMDCs semiconductors," Semiconductor Science and Technology, vol. 34, no. 8, p. 085010, 2019.
[67] P. P. Tummala, C. Martella, A. Molle, and A. Lamperti, "Ambient Pressure Chemical Vapor Deposition of Flat and Vertically Aligned MoS2 Nanosheets," Nanomaterials, vol. 12, no. 6, p. 973, 2022.
[68] M. Raju, M. Wan, S. Sen, and C. Jacob, "Influence of chemical potential on shape evolution of 2D-MoS2 flakes produced by chemical vapor deposition," Nanotechnology, vol. 32, no. 4, p. 045301, 2020.
[69] Z. Zhu, S. Zhan, J. Zhang, G. Jiang, M. Yi, and J. Wen, "Influence of growth temperature on MoS2 synthesis by chemical vapor deposition," Materials Research Express, vol. 6, no. 9, p. 095011, 2019.
[70] A. M. Van Der Zande et al., "Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide," Nature materials, vol. 12, no. 6, pp. 554-561, 2013.
[71] M.-C. Chang et al., "Fast growth of large-grain and continuous MoS2 films through a self-capping vapor-liquid-solid method," Nature communications, vol. 11, no. 1, p. 3682, 2020.
[72] G. Tai et al., "Fast and large-area growth of uniform MoS2 monolayers on molybdenum foils," Nanoscale, vol. 8, no. 4, pp. 2234-2241, 2016.
[73] T. Chiawchan, H. Ramamoorthy, K. Buapan, and R. Somphonsane, "CVD Synthesis of Intermediate State-Free, Large-Area and Continuous MoS2 via Single-Step Vapor-Phase Sulfurization of MoO2 Precursor," Nanomaterials, vol. 11, no. 10, p. 2642, 2021.
[74] Q. Ji, Y. Zhang, Y. Zhang, and Z. Liu, "Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline," Chemical Society Reviews, vol. 44, no. 9, pp. 2587-2602, 2015.
[75] K. Kang et al., "High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity," Nature, vol. 520, no. 7549, pp. 656-660, 2015.
[76] J. H. Park et al., "Synthesis of high‐performance monolayer molybdenum disulfide at low temperature," Small Methods, vol. 5, no. 6, p. 2000720, 2021.
[77] Y. Kim, H. Bark, G. H. Ryu, Z. Lee, and C. Lee, "Wafer-scale monolayer MoS2 grown by chemical vapor deposition using a reaction of MoO3 and H2S," Journal of Physics: Condensed Matter, vol. 28, no. 18, p. 184002, 2016.
[78] C. M. Schaefer et al., "Carbon incorporation in MOCVD of MoS2 thin films grown from an organosulfide precursor," Chemistry of Materials, vol. 33, no. 12, pp. 4474-4487, 2021.
[79] S. Chowdhury et al., "Two-Step Growth of Uniform Monolayer MoS2 Nanosheets by Metal–Organic Chemical Vapor Deposition," ACS omega, vol. 6, no. 15, pp. 10343-10351, 2021.
[80] J. Yang, Y. Xing, Z. Wu, P. Huang, and L. Liu, "Ultrathin molybdenum disulfide (MoS2) film obtained in atomic layer deposition: A mini-review," Science China Technological Sciences, vol. 64, no. 11, pp. 2347-2359, 2021.
[81] Y. Qiao et al., "Fabricating molybdenum disulfide memristors," ACS Applied Electronic Materials, vol. 2, no. 2, pp. 346-370, 2019.
[82] B. Qin et al., "Substrates in the synthesis of two-dimensional materials via chemical vapor deposition," Chemistry of Materials, vol. 32, no. 24, pp. 10321-10347, 2020.
[83] Q. Wang et al., "Recent progress on kinetic control of chemical vapor deposition growth of high-quality wafer-scale transition metal dichalcogenides," Nanoscale Advances, vol. 3, no. 12, pp. 3430-3440, 2021
[84] Q. Zhang, X. Xiao, L. Li, D. Geng, W. Chen, and W. Hu, "Additive‐Assisted Growth of Scaled and Quality 2D Materials," Small, vol. 18, no. 17, p. 2107241, 2022.
[85] F. Liu, J. Shi, J. Xu, N. Han, Y. Cheng, and W. Huang, "Site-selective growth of two-dimensional materials: strategies and applications," Nanoscale, vol. 14, no. 28, pp. 9946-9962, 2022.
[86] J. Mun et al., "Low-temperature growth of layered molybdenum disulphide with controlled clusters," Scientific reports, vol. 6, no. 1, p. 21854, 2016.
[87] S. Zhang et al., "High‐performance electronics and optoelectronics of monolayer tungsten diselenide full film from pre‐seeding strategy," InfoMat, vol. 3, no. 12, pp. 1455-1469, 2021.
[88] P. Yang et al., "Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au (111)," ACS nano, vol. 14, no. 4, pp. 5036-5045, 2020.
[89] Y. Li et al., "Site-specific positioning and patterning of MoS2 monolayers: The role of Au seeding," ACS nano, vol. 12, no. 9, pp. 8970-8976, 2018.
[90] C. Li, T. Kameyama, T. Takahashi, T. Kaneko, and T. Kato, "Nucleation dynamics of single crystal WS2 from droplet precursors uncovered by in-situ monitoring," Scientific reports, vol. 9, no. 1, p. 12958, 2019.
[91] K. S. Kim et al., "Non-epitaxial single-crystal 2D material growth by geometric confinement," Nature, vol. 614, no. 7946, pp. 88-94, 2023.
[92] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single-and few-layer MoS2," ACS nano, vol. 4, no. 5, pp. 2695-2700, 2010.
[93] H. Li et al., "From bulk to monolayer MoS2: evolution of Raman scattering," Advanced Functional Materials, vol. 22, no. 7, pp. 1385-1390, 2012.
[94] Chae, Woo Hyun, et al. "Substrate-induced strain and charge doping in CVD-grown monolayer MoS2." Applied Physics Letters 111.14 (2017).
[95] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, "Photoluminescence from chemically exfoliated MoS2," Nano letters, vol. 11, no. 12, pp. 5111-5116, 2011.
[96] Y. Lin et al., "Dielectric screening of excitons and trions in single-layer MoS2," Nano letters, vol. 14, no. 10, pp. 5569-5576, 2014.
[97] S. Z. Uddin et al., "Neutral exciton diffusion in monolayer MoS2," ACS nano, vol. 14, no. 10, pp. 13433-13440, 2020.
[98] K. M. McCreary, A. T. Hanbicki, S. V. Sivaram, and B. T. Jonker, "A-and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers," Apl Materials, vol. 6, no. 11, p. 111106, 2018.
[99] A. Zafar et al., "Probing the intrinsic optical quality of CVD grown MoS2," Nano Research, vol. 10, pp. 1608-1617, 2017.
[100] J. Zhou et al., "A library of atomically thin metal chalcogenides," Nature, vol. 556, no. 7701, pp. 355-359, 2018.
[101] C.-M. Hyun, J.-H. Choi, S. W. Lee, J. H. Park, K.-T. Lee, and J.-H. Ahn, "Synthesis mechanism of MoS2 layered crystals by chemical vapor deposition using MoO2 and sulfur powders," Journal of Alloys and Compounds, vol. 765, pp. 380-384, 2018.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2023-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明