參考文獻 |
[1] 2022/2023 年產業技術白皮書,產業篇,經濟部技術處(2022)
[2] 2021/2022 年產業技術白皮書,產業篇,經濟部技術處,(2021)
[3]3D感測技術發展與應用趨勢.大和有話說
Available : https://meet.bnext.com.tw/blog/view/2972
[3]Chi-Chung Lau, Si-Min Chou (-2019). 結構光三維成像及其編碼技術.科儀 新知, 219(6),25–37.
[4]微陣列透鏡
Available: https://reurl.cc/gW0n34
Available: https://reurl.cc/b9WGMl
[5] Weiss, T., & Ebert, W. (2017). Atomic Layer Deposition for Coating of Complex 3D Optics: From theory to practice. Optik & Photonik, 12(3), 42-45.
[6]AR之光學模組
Available :https://reurl.cc/GAnX5v
[7] Pfeiffer, K., Schulz, U., Tünnermann, A., & Szeghalmi, A. (2017). Antireflection coatings for strongly curved glass lenses by atomic layer deposition. Coatings, 7(8), 118.
[8] Sun, L., Yuan, G., Gao, L., Yang, J., Chhowalla, M., Gharahcheshmeh, M. H., ... & Liu, Z. (2021). Chemical vapour deposition. Nature Reviews Methods Primers, 1(1), 5.
[9] Saeed, M., Alshammari, Y., Majeed, S. A., & Al-Nasrallah, E. (2020). Chemical vapour deposition of graphene—Synthesis, characterisation, and applications: A review. Molecules,25(17), 3856.
[10] 郭建均,&郭明村. (2009).電漿輔助化學氣相沉積法於矽薄膜太陽能電池的應用.科儀新知, (173), 15-27.
[11] Zhao, X., Wei, C., Gai, Z., Yu, S., & Ren, X. (2020). Chemical vapor deposition and its application in surface modification of nanoparticles. Chemical Papers, 74, 767-778.
[12] Wei, D., Peng, L., Li, M., Mao, H., Niu, T., Han, C., ... & Wee, A. T. S. (2015). Low temperature critical growth of high quality nitrogen doped graphene on dielectrics by plasma-enhanced chemical vapor deposition. ACS nano, 9(1), 164-171.
[13]PECVD腔體示意圖
Available: https://reurl.cc/65KLpd
[14] Oviroh, P. O., Akbarzadeh, R., Pan, D., Coetzee, R. A. M., & Jen, T. C. (2019). New development of atomic layer deposition: processes, methods and applications. Science and technology of advanced materials, 20(1), 465-496.
[15] Johnson, R.W., Hultqvist, A., & Bent, S. F. (2014). A brief review of atomic layer deposition: from fundamentals to applications. Materials today, 17(5), 236-246.
[16] ALD、CVD、PVD薄膜沉積之比較
Available: https://reurl.cc/OvYVY9
[17] Kim,H.(2011). Characteristics and applications of plasma enhanced-atomic layer deposition. Thin Solid Films, 519(20), 6639-6644.
[18] Pakkala, A.,& Putkonen, M. (2010). Atomic layer deposition. In Handbook of deposition technologies for films and coatings (pp. 364-391). William Andrew Publishing.
[19] Profijt, H. B., Potts, S. E., Van de Sanden, M. C. M., & Kessels, W. M. M. (2011). Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. Journal of Vacuum Science & Technology A, 29(5).
[20] Knoops, H., Faraz, T., Arts, K., & Kessels, W. M. (2019). Status and prospects of plasma-assisted atomic layer deposition. Journal of Vacuum Science & Technology A, 37(3).
[21] Kemell, M., Färm, E., Ritala, M., & Leskelä, M. (2008). Surface modification of thermoplastics by atomic layer deposition of Al2O3 and TiO2 thin films. European Polymer Journal, 44(11), 3564-3570.
[22] George, S. M. (2010). Atomic layer deposition: an overview. Chemical reviews, 110(1), 111-131.
[23] Chen, Y., Ginga, N. J., LePage, W. S., Kazyak, E., Gayle, A. J., Wang, J.,...& Dasgupta, N. P. (2019). Enhanced interfacial toughness of thermoplastic–epoxy interfaces using ALD surface treatments. ACS applied materials & interfaces, 11(46), 43573-43580.
[24] Abadias, G., Chason, E., Keckes, J., Sebastiani, M., Thompson, G. B., Barthel, E., ... & Martinu, L. (2018). Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science & Technology A, 36(2).
[25] Shugurov, A. R., & Panin, A. V. (2020). Mechanisms of stress generation in thin films and coatings. Technical Physics, 65, 1881-1904.
[26] Schulz, U. (2006). Review of modern techniques to generate antireflective properties on thermoplastic polymers. Applied optics, 45(7), 1608-1618.
[27] Dayal, P., Savvides, N., & Hoffman, M. (2009). Characterisation of nanolayered aluminium/palladium thin films using nanoindentation. Thin Solid Films, 517(13), 3698-3703.
[28] Zhang, J. Y., Zhang, X., Wang, R. H., Lei, S. Y., Zhang, P., Niu, J. J., ... & Sun, J. (2011). Length-scale-dependent deformation and fracture behavior of Cu/X (X= Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase. Acta Materialia, 59(19), 7368-7379.
[29] Was, G. S., & Foecke, T. (1996). Deformation and fracture in microlaminates. Thin Solid Films, 286(1-2), 1-31.
[30] Odette, G. R., Chao, B. L., Sheckherd, J. W., & Lucas, G. E. (1992). Ductile phase toughening mechanisms in a TiAl-TiNb laminate composite. Acta metallurgica et materialia, 40(9), 2381-2389.
[31] Nasim, M., Li, Y., Wen, M., & Wen, C. (2020). A review of high-strength nanolaminates and evaluation of their properties. Journal of Materials Science & Technology, 50, 215-244.
[32] Schulz, U., Munzert, P., & Kaiser, N. (2001). Surface modification of PMMA by DC glow discharge and microwave plasma treatment for the improvement of coating adhesion. Surface and Coatings Technology, 142, 507-511.
[33] Paul, P., Pfeiffer, K., & Szeghalmi, A. (2020). Antireflection coating on PMMA substrates by atomic layer deposition. Coatings, 10(1), 64.
[34] Testoni, G. E., Chiappim, W., Pessoa, R. S., Fraga, M. A., Miyakawa, W., Sakane, K. K., ... & Maciel, H. S. (2016). Influence of the Al2O3 partial-monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties. Journal of Physics D: Applied Physics, 49(37), 375301.
[35] Kim, L. H., Kim, K., Park, S., Jeong, Y. J., Kim, H., Chung, D. S., ... & Park, C. E. (2014). Al2O3/ TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. ACS applied materials & interfaces, 6(9), 6731-6738.
[36] Su, Z., & Zhou, W. (2008). Formation mechanism of porous anodic aluminium and titanium oxides. Advanced materials, 20(19), 3663-3667.
[37] Ghazaryan, L., Handa, S., Schmitt, P., Beladiya, V., Roddatis, V., Tünnermann, A., & Szeghalmi, A. (2020). Structural, optical, and mechanical properties of TiO2 nanolaminates. Nanotechnology, 32(9), 095709.
[38] Ylivaara, O. M., Kilpi, L., Liu, X., Sintonen, S., Ali, S., Laitinen, M., ... & Puurunen, R.L.(2017). Aluminum oxide/titanium dioxide nanolaminates grown by atomic layer deposition: Growth and mechanical properties. Journal of Vacuum Science & Technology A, 35(1).
[39] Wei, Y., Xu, Q., Wang, Z., Liu, Z., Pan, F., Zhang, Q., & Wang, J. (2018). Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition. Journal of Alloys and Compounds, 735, 1422-1426.
[40] Bulusu, A., Singh, A., Wang, C. Y., Dindar, A., Fuentes-Hernandez, C., Kim, H., ... & Graham, S. (2015). Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics. Journal of Applied Physics, 118(8).
[41] Shestaeva, S., Bingel, A., Munzert, P., Ghazaryan, L., Patzig, C., Tünnermann, A., & Szeghalmi, A. (2017). Mechanical, structural, and optical properties of PEALD metallic oxides for optical applications. Applied optics, 56(4), C47-C59.
[42] Yu-Sung Hsieh, Yu-Jen Lu, Yi-San Chang. (2012). 快速橢偏單層膜計算模 組開發. 科儀新知, 33(6), 40–48.
[43] Kannan, M. (2018). Transmission electron microscope—Principle, components and applications. A textbook on fundamentals and applications of nanotechnology, 93-102.
[44] 巨孚儀器 Available:https://shorturl.at/wCNRY
[45] Ming Yen Lin, Chia-Seng Chang, Wenlung Li.(2005).原子力顯微儀的原理(下).科儀新知, (148), 46-57.
[46]原子力顯微鏡原理 Available: https://reurl.cc/aVRYOZ
[47]利用X-ray看透材料原子排列結構世界
Available: https://reurl.cc/ZWEk06
[48]複式光學顯微鏡 Available: https://reurl.cc/NAkAAn
[49] Maeng, W. J., & Kim, H. (2006). Thermal and plasma-enhanced ALD of Ta and Ti oxide thin films from alkylamide precursors. Electrochemical and solid-state letters, 9(6), G191.
[50] Xie, Q., Musschoot, J., Deduytsche, D., Van Meirhaeghe, R. L., Detavernier, C., Van den Berghe, S., ... & Qu, X. P. (2008). Growth kinetics and crystallization behavior of TiO2 films prepared by plasma enhanced atomic layer deposition. Journal of The Electrochemical Society, 155(9), H688.
[51] 李正中. (2020). 薄膜光學與鍍膜技術 (9th ed.). 藝軒圖書.
[52] 王晟輔&郭倩丞. (2022).利用電漿輔助原子沉積法沉積奈米複合層改善塑膠基板之膜裂現象.光電科學與工程學系.國立中央大學.
[53] Iatsunskyi, I., Coy, E., Viter, R., Nowaczyk, G., Jancelewicz, M., Baleviciute, I., ... & Jurga, S. (2015). Study on structural, mechanical, and optical properties of Al2O3–TiO2 nanolaminates prepared by atomic layer deposition. The Journal of Physical Chemistry C, 119(35), 20591-20599.
[54] Aghaee, M., Maydannik, P. S., Johansson, P., Kuusipalo, J., Creatore, M., Homola, T., & Cameron, D. C. (2015). Low temperature temporal and spatial atomic layer deposition of TiO2 films. Journal of Vacuum Science & Technology A, 33(4).
[55] Lee, Y., Seo, S., Oh, I. K., Lee, S., & Kim, H. (2019). Effects of O2 plasma treatment on moisture barrier properties of SiO2 grown by plasma-enhanced atomic layer deposition. Ceramics International, 45(14), 17662-17668. |