博碩士論文 110323032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.223.172.252
姓名 李柏泓(Bo-Hong Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 銲接件振動應力消除模擬並以類神經網路進行預估
(Simulation of Vibration Stress Relief of Weldments and Prediction with Artificial Neural Network)
相關論文
★ 四弦型非對稱光學讀取頭致動器模態共振分析與抑制★ 網路連接儲存裝置熱分析與設計
★ 小型垂直軸風力發電機之有限元素分析★ 平板受聲源作用之振動與輻射聲場分析
★ 壓電吸振器應用於平板的振動與噪音控制★ 主動式吸振器應用於薄板減振與減噪
★ 離散振動系統之分析軟體製作★ 有洞薄方板之動態分析與激振後之聲場
★ 撓性結構之主動振動控制★ 速度與位移回饋式壓電吸振器之減振研究
★ 以LabVIEW為介面之模態測試軟體製作★ 電壓回饋壓電吸振器對平板之振動控制
★ 可調式消音閥的分析與最佳設計★ 旋轉樑的動態分析與壓電吸振器之減振設計
★ 自感式壓電吸振器之設計與應用於矩形板之減振★ 多孔薄方板之振動與聲場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-28以後開放)
摘要(中) 本研究期望提供一個類神經網路模型可以快速預估不同工況的殘留應力在經過振動應力消除後的應力值,透過此類神經網路模型可以只需直接輸入所需少數特徵就可以快速獲得應力消除的量,以立即預估振動應力消除的效果。如何消除殘留應力一直都是金屬加工的重要課題之一,隨著技術發展,振動應力消除法(VSR)逐漸受到關注,該技術藉由疊加工件內部的殘留應力與外部施予的負載來產生塑性變形,並由此達到應力重新分布,降低材料內部應力的目的,然而其應力消除量不好量測。故本研究透過進行銲接有限元素模擬產生殘留應力,再對其施予振動應力消除,即反覆施力效果模擬,並收集有限元素模擬結果的網格節點資料形成數據庫,以該數據庫訓練類神經網路,期望能訓練出準確度高的類神經網路,期能直接以此對振動應力消除後的殘留應力進行預估。
摘要(英) This research aims to provide an artificial neural network model that can efficiently estimate the residual stress under different operating conditions of vibration stress relief. By utilizing, it is expected to bypass the time-consuming finite element simulations. Through the direct input of the necessary features to the artificial neural network model, it is feasible to expeditiously acquire stress values after applying the vibratory force. Elimination of residual stress has always been one of the important issues in metal processing. With the development of innovative technology, Vibration Stress Relief (VSR) has gradually attracted attention. Vibration stress relief achieves because of the plastic deformation due to superimposing the residual stress and the applied cyclic load. However, there is no systematic way to estimate the stress reduction effect. This study, therefore, tried to numerically study the stress reduction resulting from the application of a cyclical load. Next the numerical data obtained from the finite element software, ANSYS, were collected. Artificial neural network model was build using these numerical data. The differences between the numerical data and the predicted data of the model were less than 5 % in Mean Absolute Percentage Error (MAPE).
關鍵字(中) ★ 振動應力消除
★ 沙博什模型
★ 有限元素模擬
★ 類神經網路
關鍵字(英) ★ Vibration stress relief
★ Chaboche model
★ Simulation using finite element software
★ Artificial neural network
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究背景與目的 1
1-2 文獻回顧 1
第二章 金屬材料基本理論 6
2-1 塑性循環負載理論 6
2-1-1 塑性變形 6
2-1-2 包辛格效應與硬化行為 7
2-1-3 材料的循環應力-應變行為 10
2-2 沙博什材料模型(Chaboche model) 12
第三章 類神經網路基本理論 16
3-1 資料前處理(Data pre-processing) 16
3-1-1 特徵重要性分析 16
3-1-1-1 皮爾森相關係數(Pearson correlation coefficient) 16
3-1-1-2 隨機森林(Random forest)特徵重要性分析 17
3-1-2 特徵轉換/正規化(Normalization) 19
3-2 類神經網路結構 20
3-3反向傳播(Backpropagation) 22
3-4 過擬合(Overfitting) 22
3-4-1 三分留出法(Three-way holdout method) 22
3-5 隨機種子(Random seed) 23
第四章 銲接薄平板振動應力消除模擬 24
4-1 模擬方法與流程 24
4-2 銲接模擬 24
4-2-1 SS400銲接材料參數 25
4-2-2 SUS304銲接材料參數 32
4-3 Inistate指令導入新模型 36
4-3-1 SS400銲接應力導入新模型 37
4-3-2 SUS304銲接應力導入新模型 39
4-4 Inistate新模型施作振動應力消除 41
4-4-1 SS400 Inistate新模型振動應力消除之成效 41
4-4-2 SUS304 Inistate新模型振動應力消除之成效 48
第五章 以類神經網路預估銲接振動應力消除之成效 53
5-1 類神經網路模型設定 53
5-1-1 基底資料 53
5-1-2 輸入(Input)與輸出(Output) 54
5-1-3 類神經網路架構 58
5-2 類神經網路模型篩選 59
5-2-1 模型篩選基準與過程 60
5-2-2 所選擇最終模型之表現 68
第六章 結論與未來展望 71
6-1 結論 71
6-2 未來展望 72
參考文獻 74
參考文獻 [1]Budaházy, V. and Dunai, L., “Parameter-refreshed Chaboche model for mild steel cyclic plasticity behavior,” Periodica Polytechnica, pp. 139-155, 2013.
[2]Chaboche, J. L., “Constitutive Equation for Cyclic Plasticity and Cyclic Viscoplasticity,” International Journal of Plasticity, pp. 247-302, 1986.
[3]Indermohan, H. and Reinhardt, W., “Ratcheting Responses of Strain Hardening Plasticity Models,” Proceedings of the ASME Pressure Vessels & Piping Division Conference, 2011.
[4]吳志榮, 胡緒騰, 辛朋朋 與 宋迎東, “基於Chaboche模型的金屬材料穩態循環應力-應變曲線的本構建模方法,” 機械工程材料, pp. 92-95, 2013.
[5]Das, D. and Chakraborti, P. C., “Effect of stress parameters on ratcheting deformation stages of polycrystalline OFHC copper,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 34, pp. 734-742, 2011.
[6]shimada, Y., Jiao, Y., Kim, J. and Yamada, S., “Effects of Strain-rate on the Hysteretic behavior of Structural Steels,” 15th World Conference on Earthquake Engineering, 2012.
[7]Dahlberg, M. and Segle, P., “Evaluation of models for cyclic plastic deformation – A literature study,” Swedish Radiation Safety Authority, 2010.
[8]Novak, J. S., Benasciutti, D., Bona, F. D., Stanojević, A., Luca, A. D. and Raffaglio, Y., “Estimation of Material Parameters in Nonlinear Hardening Plasticity Models and Strain Life Curves for CuAg Alloy,” IOP Conference Series: Materials Science and Engineering, 2016.
[9]Hu, W., Wang, C. H. and Barter, S., “Analysis of Cyclic Mean Stress Relaxation and Strain Ratchetting Behaviour of Aluminium 7050,” Defence Techanical Information Center, 1999.
[10]Ahmadzadeh, G. R. and Varvani-Farahani, A., “Ratcheting assessment of materials based on the modified Armstrong–Frederick hardening rule at various uniaxial stress levels,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 36, pp. 1232-1245, 2013.
[11]Riccius, J. R. and Haidn, O. J., “Determination of Linear and Nonlinear Parameters of Combustion Chamber Wall Materials,” 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2003.
[12]Kulkarni, S., Desai, Y. M, Kant, T., Reddy, G.R., Prasad, P., Vaze, K. K. and Gupta, C., “Uniaxial and biaxial ratchetting in piping materials—experiments and analysis,” International Journal of Pressure Vessels and Piping, Vol. 81, pp. 609-617, 2004.
[13]He, W., Gu, B., Zheng, J. and Shen, R., “Research on High-Frequency Vibratory Stress Relief of Small Cr12MoV Quenched Specimens,” Applied Mechanics and Materials, Vols. 157-158, pp. 1157-1161, 2012.
[14]Qian, Z., Chumbley, S., Karakulak, T. and Johnson, E., “The Residual Stress Relaxation Behavior of Weldments During Cyclic Loading,” Metallurgical and Materials Transactions A, Vol. 44A, pp. 3147-3156, 2013.
[15]Zhao, X. C., Zhang, Y. D., Zhang, H. W. and Wu, Q., “Simulation of vibration stress relief after welding based on FEM,” Acta Metallurgica Sinica, Vol. 21, pp. 289-294, 2008.
[16]Chen, Y., Liu, B. and Kang, R., “Study of vibratory stress relief effect of quartz flexible accelerometer with FEA method,” Journal of Vibroengineering, Vol. 15, pp. 784-793, 2013.
[17]王柏驊, “振動應力消除之有限元素模擬方法初探,” 國立中央大學機械工程學系碩士論文, 2018.
[18]陳宥任, “以有限元素模擬結果評估振動應力消除之效果,” 國立中央大學機械工程學系碩士論文, 2019.
[19]金郁翔, “以有限元素分析方法預估並量化振動應力消除之效果,” 國立中央大學機械工程學系碩士論文, 2021.
[20]Subramani, T. and Sharmila, S., “Prediction of Deflection and Stresses of Laminated Composite Plate with Artificial Neural Network Aid,” International Journal of Modern Engineering Research, Vol. 4, pp. 51-58, 2014.
[21]Chen, S., Gao, H., Lin, M., Wu, S. and Wu, Q., “Research on process optimization and rapid prediction method of thermal vibration stress relief for 2219 aluminum alloy rings,” Reviews on Advanced Materials Science, Vol. 61, pp. 292-305, 2022.
[22]Dowling, N. E., Mechanical Behavior of Materials, Fourth ed, Pearson, UK, 1988.
[23]ANSYS Inc., ANSYS Mechanical Advanced Nonlinear Materials, 2011.
[24]Yang, M., Pan, Y., Yuan, F., Zhu, Y. and Wu, Z., “Back stress strengthening and strain hardening in gradient structure,” Materials Research Letters, pp. 145-151, 2016.
[25]Asraff, A. K., Sheela, S., Eapen, R. K. and Babu, A., “Cyclic stress analysis of a rocket engine thrust chamber using Chaboche constitutive model,” International Conference on Materials, 2015.
[26]Wikipedia, Pearson correlation coefficient.
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient, accessed on 15 May, 2023.
[27]Chaibi, M., Benghoulam, E. M., Tarik, L., Berrada, M., and El Hmaidi, A., “Machine Learning Models Based on Random Forest Feature Selection and Bayesian Optimization for Predicting Daily Global Solar Radiation,” International Journal of Renewable Energy Development, Vol. 11, pp. 309-323, 2022.
[28]Wikipedia, 隨機森林.
https://zh.wikipedia.org/wiki/随机森林, accessed on 17 May, 2023.
[29]Hastie, T., Tibshirani, R. and Friedman, J. H., The elements of statistical learning: data mining, inference, and prediction, Second ed., Springer, New York, 2009.
[30]Krenker, A., Bešter, J. and Kos, A., “Introduction to the artificial neural networks,” Artificial Neural Networks: Methodological Advances and Biomedical Applications, pp. 1-18, 2011.
[31]Raschka, S., “Model evaluation, model selection, and algorithm selection in machine learning,” arXiv preprint arXiv:1811.12808, 2018.
[32]安迪亞, “對接銲接之熱傳與應力分析,” 國立中央大學機械工程學系碩士論文, 2018.
[33]Gary, S. S., Practical residual stress measurement methods, John Wiley & Sons, UK, 2013.
[34]永石尚昭 と 松永久生, “水素環境下における金属材料の疲労強度特性と破壊メカニズムに関する研究 第2報,” 佐賀県工業技術センター研究報告書, Vol. 26, pp. 1-8, 2017.
[35]Rui W., Sherif R., Hisashi S., Hidekazu M. and Zhang J., “Numerical and Experimental Investigations of Welding Deformation,” Transaction of JWRI, Vol. 37, pp. 79-90, 2008.
指導教授 黃以玫(Yi-Mei Huang) 審核日期 2023-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明