參考文獻 |
[1] 3GPP TS 23.501 “5G; NR; System architecture for the 5G System (5GS),” v17.7.0, Jan. 2023.
[2] 3GPP TS 38.101-1 “5G; NR; User Equipment (UE) radio transmission and reception; Part 1:
Range 1 Standalone,” v17.6.0, Aug. 2022.
[3] 3GPP TS 38.101-2 “5G; NR; User Equipment (UE) radio transmission and reception; Part 2:
Range 2 Standalone,” v17.8.0, Jan. 2023.
[4] 3GPP TS 38.211 “5G; NR; Physical channels and modulation,” v17.2.0, Jul. 2022.
[5] 3GPP TS 38.212 “5G; NR; Multiplexing and channel coding,” v17.2.0, Jul. 2022.
[6] 3GPP TS 38.213 “5G; NR; Physical layer procedures for control,” v17.2.0, Jul. 2022.
[7] 3GPP TS 38.214 “5G; NR; Physical layer procedures for data,” v17.2.0, Jul. 2022.
[8] 3GPP TS 38.300 “5G; NR; NR and NG-RAN Overall description; Stage-2,” v17.1.0, Aug. 2022.
[9] 3GPP TS 38.321 “5G; NR; Medium Access Control (MAC) protocol specification,” v17.1.0,
Aug. 2022.
[10] 3GPP TS 38.331 “5G; NR; Radio Resource Control (RRC); Protocol specification,” v17.1.0,
Aug. 2022.
[11] 3GPP TS 38.913 “5G; Study on scenarios and requirements for next generation access
technologies,” v17.0.0, May 2022.
[12] A. Mamane, M. Fattah, M. E. Ghazi, M. E. Bekkali, Y. Balboul and S. Mazer, "Scheduling
Algorithms for 5G Networks and Beyond: Classification and Survey," in IEEE Access, vol. 10,
pp. 51643-51661, 2022.
[13] S. Shakkottai and R. Srikant, ‘‘Scheduling real-time traffic with deadlines over a wireless
channel,’’ in Proc. 2nd ACM Int. Workshop Wireless Mobile Multimedia (WOWMOM). New
York, NY, USA: ACM Press, 1999, pp. 35–42. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=313256.313273.
[14] X. Yuan and Z. Duan, ‘‘Fair Round-Robin: A low complexity packet scheduler with
proportional and worst-case fairness,’’ IEEE Trans. Comput., vol. 58, no. 3, pp. 365–379, Mar.
2009. [Online]. Available: http://ieeexplore.ieee.org/document/4626953/
[15] S. Ramabhadran and J. Pasquale, “The Stratified Round Robin Scheduler: Design, Analysis,
and Implementation,” IEEE/ACM Trans. Networking, vol. 14, no. 6, pp. 1362-1373, Dec. 2006.
[16] A. Silberschatz, P. B. Galvin, and G. Gagne, “Operating System Concepts,” nineth edition.
[17] F. Kelly, “Charging and rate control for elastic traffic,” Eur. Trans. Telecommun., vol. 8, pp.
33–37, Jan./Feb. 1997.
[18] 3GPP TSG-RAN WG2 Meeting #115 electronic, “Report of [AT115-e][042][eIAB] fairness,
latency and congestion (Interdigital),” Aug. 2021.
[19] R.S. Sutton and A.G. Barto, “Reinforcement learning: An introduction.,” Cambridge, MA,
USA: MIT press, 2018.
[20] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529-533, Feb. 2015.
[21] I. Goodfellow, Y. Bengio, and A. Courville, “Deep learning,” Cambridge, MA, USA: MIT
press, 2016.
[22] O-RAN TS “O-RAN Architecture Description,” WG1, OAD-R003-v08.00.
[23] O-RAN TR “AI/ML workflow description and requirements,” WG2, AIML-v01.03.
[24] O-RAN TS “O-RAN Operations and Maintenance Interface Specification,” WG1, O1-
Interface.0-v04.00.
[25] O-RAN TS “Near-RT RIC Architecture,” WG3, RICARCH-R003-v04.00.
[26] O-RAN TS “E2 General Aspects and Principles,” WG3, E2GAP-R003-v03.00.
[27] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network configuration protocol
(NETCONF),” Internet Requests for Comments, RFC Editor, RFC 6241, June 2011. [Online].
Available: http://www.rfc- editor.org/rfc/rfc6241.txt
[28] M. Polese, L. Bonati, S. D′Oro, S. Basagni, T. Melodia, “Understanding O-RAN: Architecture,
Interfaces, Algorithms, Security, and Research Challenges", arXiv:2202.01032 [cs.NI], Feb.
2022.
[29] K. Boutiba, M. Bagaa and A. Ksentini, “On using Deep Reinforcement Learning to reduce
Uplink Latency for uRLLC services," GLOBECOM 2022 - 2022 IEEE Global
Communications Conference, Rio de Janeiro, Brazil, pp. 407-412, 2022.
[30] Hossain, Q. C. Li, D. Ying, G. Wu and C. Xiong, “THz Channel Model for 6G
Communications,” 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), Helsinki, Finland, pp. 1-7, 2021.
[31] Y. Xing and T. S. Rappaport, “Propagation Measurement System and Approach at 140 GHz-
Moving to 6G and Above 100 GHz,” 2018 IEEE Global Communications Conference
(GLOBECOM), Abu Dhabi, United Arab Emirates, pp. 1-6, 2018.
[32] S. Tarboush, H. Sarieddeen, M. -S. Alouini and T. Y. Al-Naffouri, “Single- Versus Multicarrier
Terahertz-Band Communications: A Comparative Study,” in IEEE Open Journal of the
Communications Society, vol. 3, pp. 1466-1486, 2022.
[33] T. S. Rappaport et al., “Wireless Communications and Applications Above 100 GHz:
Opportunities and Challenges for 6G and Beyond,” in IEEE Access, vol. 7, pp. 78729-78757,
2019.
[34] L. You, Q. Liao, N. Pappas and D. Yuan, “Resource Optimization with Flexible Numerology
and Frame Structure for Heterogeneous Services,” in IEEE Communications Letters, vol. 22,
no. 12, pp. 2579-2582, Dec. 2018.
[35] Y. Yu, T. Wang, and S. C. Liew, “Deep-Reinforcement Learning Multiple Access for
Heterogeneous Wireless Networks,” 2018 IEEE International Conference on Communications
(ICC), Kansas City, MO, USA, 2018.
[36] Y. Yu, S. C. Liew and T. Wang, “Non-Uniform Time-Step Deep Q-Network for Carrier-Sense
Multiple Access in Heterogeneous Wireless Networks,” in IEEE Transactions on Mobile
Computing, vol. 20, no. 9, pp. 2848-2861, 1 Sept. 2021.
[37] Y. Yu, S. C. Liew and T. Wang, “Multi-Agent Deep Reinforcement Learning Multiple Access
for Heterogeneous Wireless Networks with Imperfect Channels,” in IEEE Transactions on
Mobile Computing, vol. 21, no. 10, pp. 3718-3730, 1 Oct. 2022.
[38] M. Elsayem, H. Abou-zeid, A. Afana and S. Givigi, “Reinforcement Learning-based Dynamic
Resource Allocation for Grant-Free Access,” GLOBECOM 2022 - 2022 IEEE Global
Communications Conference, Rio de Janeiro, Brazil, pp. 1091-1096, 2022.
[39] K. Boutiba, M. Bagaa and A. Ksentini, “Radio Resource Management in Multi-numerology 5G
New Radio featuring Network Slicing,” ICC 2022 - IEEE International Conference on
Communications, Seoul, Korea, Republic of, pp. 359-364, 2022.
[40] Q. Zhou, X. Ye and L. Fu, “Deep Reinforcement Learning Based Scheduling Scheme for the
NR-U/WiGig Coexistence in Unlicensed mmWave Bands,” ICC 2022 - IEEE International
Conference on Communications, Seoul, Korea, Republic of, 2022.
[41] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3, pp. 279–292,
May 1992. [Online]. Available: https://doi.org/10.1007/BF00992698.
[42] OpenAir5GLAB, http://openairinterface.eurecom.fr
[43] OpenAirInterface5G, Gitlab Open Source, https://gitlab.eurecom.fr/oai/openairinterface5g
[44] FlexRIC, Gitlab Open Source, https://gitlab.eurecom.fr/mosaic5g/flexric
[45] S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne, “NR: The new 5G radio access
technology,” IEEE Communications Standards Magazine, vol. 1, no. 4, pp. 24-30, Dec. 2017.
[46] T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE Journal of Solid-State
Circuits, vol. 35, no. 3 pp. 326-336, March 2000
[47] Robert Schmidt, “Slicing in heterogeneous software-defined radio access networks,”
Networking and Internet Architecture [cs.NI]. Sorbonne Université, 2021. English, NNT:
2021SORUS525, tel- 03783488.
[48] Ettus Research, USRP B210, https://www.ettus.com/all-products/ub210-kit/
[49] Yan Huang, Shaoran, Tom Hou, and Wenjing Lou, “GPU-Based Design to Achieve 100 ??
Scheduling for 5G NR,” Nvidia, Mar. 2019. [Online]. Available:
https://developer.nvidia.com/blog/gpu-based-100-μs-schedulingr-5g-nr/
[50] “White paper on 6G vision and Candidate Technologies,” IMT-2030 6G Promotion Group, Jun.
2021. |