參考文獻 |
[1] Lan, G., Wang, Y., & Ou, J. Y. (2022). Optimization of metamaterials and metamaterial-microcavity based on deep neural networks. Nanoscale Advances, 4(23), 5137-5143.
[2] Yang, J., Ghimire, I., Wu, P. C., Gurung, S., Arndt, C., Tsai, D. P., & Lee, H. W. H. (2019). Photonic crystal fiber metalens. Nanophotonics, 8(3), 443-449.
[3] Chen, M. K., Wu, Y., Feng, L., Fan, Q., Lu, M., Xu, T., & Tsai, D. P. (2021). Principles, functions, and applications of optical meta‐lens. Advanced Optical Materials, 9(4), 2001414.
[4] Hu, J., Bandyopadhyay, S., Liu, Y. H., & Shao, L. Y. (2021). A review on metasurface: from principle to smart metadevices. Frontiers in Physics, 8, 586087.
[5] Hsu, W. L., Chen, Y. C., Yeh, S. P., Zeng, Q. C., Huang, Y. W., & Wang, C. M. (2022). Review of metasurfaces and metadevices: advantages of different materials and fabrications. Nanomaterials, 12(12), 1973.
[6] Sun, S., Yang, K. Y., Wang, C. M., Juan, T. K., Chen, W. T., Liao, C. Y., ... & Tsai, D. P. (2012). High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano letters, 12(12), 6223-6229.
[7] Babicheva, V. E., & Evlyukhin, A. B. (2017). Resonant lattice Kerker effect in metasurfaces with electric and magnetic optical responses. Laser & Photonics Reviews, 11(6), 1700132.
[8] Falcone, F., Lopetegi, T., Laso, M. A. G., Baena, J. D., Bonache, J., Beruete, M., ... & Sorolla, M. (2004). Babinet principle applied to the design of metasurfaces and metamaterials. Physical review letters, 93(19), 197401.
[9] Yu, C. Y., Zeng, Q. C., Yu, C. J., Han, C. Y., & Wang, C. M. (2021). Scattering analysis and efficiency optimization of dielectric Pancharatnam–Berry-Phase metasurfaces. Nanomaterials, 11(3), 586.
[10] Chen, K., Feng, Y., Monticone, F., Zhao, J., Zhu, B., Jiang, T., ... & Qiu, C. W. (2017). A reconfigurable active Huygens′ metalens. Advanced materials, 29(17), 1606422.
[11] Ren, J., Li, T., Fu, B., Wang, S., Wang, Z., & Zhu, S. (2021). Wavelength-dependent multifunctional metalens devices via genetic optimization. Optical Materials Express, 11(11), 3908-3916.
[12] Aieta, F., Genevet, P., Kats, M. A., Yu, N., Blanchard, R., Gaburro, Z., & Capasso, F. (2012). Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano letters, 12(9), 4932-4936.
[13] Aieta, F., Kats, M. A., Genevet, P., & Capasso, F. (2015). Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347(6228), 1342-1345.
[14] Shrestha, S., Overvig, A. C., Lu, M., Stein, A., & Yu, N. (2018). Broadband achromatic dielectric metalenses. Light: Science & Applications, 7(1), 85.
[15] Wang, S., Wu, P. C., Su, V. C., Lai, Y. C., Chen, M. K., Kuo, H. Y., ... & Tsai, D. P. (2018). A broadband achromatic metalens in the visible. Nature nanotechnology, 13(3), 227-232.
[16] Fan, Z. B., Qiu, H. Y., Zhang, H. L., Pang, X. N., Zhou, L. D., Liu, L., ... & Dong, J. W. (2019). A broadband achromatic metalens array for integral imaging in the visible. Light: Science & Applications, 8(1), 67.
[17] Chen, W. T., Zhu, A. Y., Sanjeev, V., Khorasaninejad, M., Shi, Z., Lee, E., & Capasso, F. (2018). A broadband achromatic metalens for focusing and imaging in the visible. Nature nanotechnology, 13(3), 220-226.
[18] Chen, W. T., Zhu, A. Y., Sisler, J., Bharwani, Z., & Capasso, F. (2019). A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nature communications, 10(1), 355.
[19] Fan, C. Y., & Su, G. D. J. (2021). Time-effective simulation methodology for broadband achromatic metalens using deep neural networks. Nanomaterials, 11(8), 1966.
[20] Wang, F., Geng, G., Wang, X., Li, J., Bai, Y., Li, J., ... & Zhou, J. (2022). Visible achromatic metalens design based on artificial neural network. Advanced Optical Materials, 10(3), 2101842.
[21] Kreyszig, E., Kreyszig, H., Norminton, E. J., & Corliss, S. (2011). Partial differential equations (PDEs). Advanced Engineering Mathematics, 10.
[22] Gaskill, J. D. (1978). Linear systems, Fourier transforms, and optics (Vol. 56). John Wiley & Sons.
[23] Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., ... & Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer vision, graphics, and image processing, 39(3), 355-368.
[24] Arici, T., Dikbas, S., & Altunbasak, Y. (2009). A histogram modification framework and its application for image contrast enhancement. IEEE Transactions on image processing, 18(9), 1921-1935.
[25] Krishna, A. S., Rao, G. S., & Sravya, M. (2013). Contrast enhancement techniques using histogram equalization methods on color images with poor lightning. International journal of computer science, engineering and applications, 3(4), 15.
[26] Loh, Y. P., & Chan, C. S. (2019). Getting to know low-light images with the exclusively dark dataset. Computer Vision and Image Understanding, 178, 30-42.
[27] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., ... & Shi, W. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4681-4690).
[28] Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.
[29] You, S., You, N., & Pan, M. (2019). PI-REC: Progressive image reconstruction network with edge and color domain. arXiv preprint arXiv:1903.10146.
[30] Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., & Fu, Y. (2018). Image super-resolution using very deep residual channel attention networks. In Proceedings of the European conference on computer vision (ECCV) (pp. 286-301).
[31] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
[32] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
[33] Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504-507.
[34] Masci, J., Meier, U., Cireşan, D., & Schmidhuber, J. (2011). Stacked convolutional auto-encoders for hierarchical feature extraction. In Artificial Neural Networks and Machine Learning–ICANN 2011: 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I 21 (pp. 52-59). Springer Berlin Heidelberg.
[35] Zhou, S., Chan, K., Li, C., & Loy, C. C. (2022). Towards robust blind face restoration with codebook lookup transformer. Advances in Neural Information Processing Systems, 35, 30599-30611.
[36] Esser, P., Rombach, R., & Ommer, B. (2021). Taming transformers for high-resolution image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12873-12883).
[37] Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., & Wilson, A. G. (2018). Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information processing systems, 31.
[38] Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2015, February). The loss surfaces of multilayer networks. In Artificial intelligence and statistics (pp. 192-204). PMLR.
[39] Taylor, D. P. (2002). Peak Signal-to-Noise Ratio in Digital Image Processing. In Encyclopedia of Computer Science and Technology (Vol. 43, No. 25, pp. 236-245). Taylor & Francis.
[40] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4), 600-612.
[41] Wikipedia contributors. (2023, August 15). Peak signal-to-noise ratio. Wikipedia. https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio |