博碩士論文 110323121 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:18.226.185.44
姓名 周威宇(Zhou, Wei-Yu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 半導體設備精密電源參數實驗設計-非對稱雙極脈衝DC濺鍍氮化鋁薄膜之微觀組織與機械性質最佳化分析
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 在本論文的研究中,使用了非對稱雙極脈衝直流電源在反應式磁控濺鍍系統濺鍍氮化鋁 (AlN) 薄膜,利用Box–Behnken實驗方法和反應曲面法 (Response Surface Method, RSM) 對直流脈衝參數(反向電壓、脈衝頻率和占空比)來進行實驗設計 (Design of Experiment, DOE),以建立數學模型用於解釋自變量和應變量之間的關係。透過使用X射線衍射(X-ray diffraction, XRD),原子力顯微鏡(Atomic Force Microscope, AFM)和超高解析場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM)來表徵氮化鋁薄膜的晶體微觀結構、取向及表面粗糙度。此外,透過電漿點火及功率升降以模擬實際製程,並採用光譜分析儀 (Optical Emission Spectroscopy, OES) 實時監測電漿體,通過電壓、電流分析其數據以測試電源之穩定性。本研究確定了用於生產高質量 AlN 薄膜之最佳化脈衝參數為50 V的反向電壓、100 kHz的脈衝頻率及81-82% 的佔空比,得到之最佳AlN(002)半高寬在0.20-0.21°之間、表面粗糙度1.76-1.92 nm之間及晶粒尺寸44.38-42.94 nm之間,並成功驗證了用於濺鍍之非對稱雙極脈衝直流電源的穩定性。
摘要(英) In the present study, the sputtered aluminum nitride (AlN) films were processed in a reactive pulsed DC magnetron system. We applied a total of 15 different design of experiments (DOEs) on DC pulsed parameters (reverse voltage, pulse frequency, and duty cycle) with Box–Behnken experimental method and response surface method (RSM) to establish a mathematical model by experimental data for interpreting the relationship between independent and response variables. For the characterization of AlN films on the crystal quality, microstructure, thickness, and surface roughness, X-ray diffraction (XRD), atomic force microscopy (AFM), and field emission-scanning electron microscopy (FE-SEM) were utilized. AlN films have different microstructures and surface roughness under different pulse parameters. Moreover, by simulating the actual process through plasma ignition and power ramping, and using optical emission spectroscopy (OES) to monitor the plasma in real time, the stability of the power supply was tested by analyzing the voltage and current data. This study determined the optimal pulse parameters for producing high-quality AlN films as 50 V reverse voltage, 100 kHz pulse frequency, and 81-82% duty cycle. The obtained optimal AlN(002) full width at half maximum ranged from 0.20 to 0.21°, the surface roughness ranged from 1.76 to 1.92 nm, and the grain size ranged from 44.38 to 42.94 nm, and successfully verified the stability of the pulsed DC power supply for sputtering.
關鍵字(中) ★ 反應脈衝直流磁控濺鍍
★ 氮化鋁
★ 脈衝參數
關鍵字(英)
論文目次 目錄
中文摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 viii
表目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 4
第二章 材料與背景介紹 5
2-1 物理氣相沉積(PVD) 5
2-2 薄膜沉積原理 7
2-3 脈衝直流濺鍍簡介 9
2-4 電漿簡介 11
2-5 光學放射光譜(OES) 13
2-6 實驗設計(DOE)與反應曲面法(RSM) 15
第三章 研究方法 20
3-1 實驗流程 20
3-2 實驗方法 21
3-2-1參數設定 21
3-2-2試片清洗步驟 23
3-2-3試片製作 23
3-2-4實驗步驟 24
3-3 實驗裝置與量測 25
3-3-1非對稱雙極脈衝直流反應式磁控濺鍍(Pulsed DC reactive magnetron sputtering) 25
3-3-2光學放射光譜 (Optical Emission Spectroscopy, OES) 28
3-3-3原子力顯微鏡 (Atomic Force Microscope, AFM) 31
3-3-4掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 33
3-3-6 X-射線繞射分析(X-ray diffraction, XRD) 35
第四章 實驗結果與討論 37
4-1 相異之脈衝參數對薄膜結構及機械性質之影響 37
4-1-1掃描電子顯微鏡對氮化鋁薄膜分析 38
4-1-2原子力顯微鏡(AFM)對氮化鋁薄膜表面粗糙度分析 40
4-1-3 X-射線繞射分析(XRD)對氮化鋁薄膜分析 42
4-2 統計分析及最佳化AlN薄膜品質 44
4-3 電漿點火、功率改變穩定度研究 58
第五章 結論 65
參考文獻 66


圖目錄
圖2-1 反應式磁控濺鍍示意圖 6
圖2-2 薄膜沉積步驟示意圖 8
圖2-3 非對稱脈衝直流濺射的理想電壓波型[26] 9
圖2-4 電漿放電中電子和氣體溫度隨壓力變化之示意圖[27] 12
圖2-5 中央合成設計(a) k = 2,(b) k = 3 18
圖2-6 Box-Behnken設計(k=3) 19

圖3-1反應磁控濺射沉積AlN薄膜之濺鍍系統及實驗流程 20
圖3-2本次實驗室Sputter設備外觀實體圖 27
圖3-3光放射光譜儀裝置圖 29
圖3-4 OES光譜圖 30
圖3-5 AFM設備圖 32
圖3-6中央大學貴儀中心CFE-SEM設備 34
圖3-7 XRD 設備圖 36
圖3- 8 XRD 量測示意圖 36

圖4-1 透過FE-SEM拍攝之氮化鋁薄膜橫截面微觀形貌及厚度 38
圖4-2 透過FE-SEM拍攝氮化鋁薄膜表面微觀形貌及平均晶粒尺寸 39
圖4-3 透過AFM量測氮化鋁薄膜表面之平均粗糙度 40
圖4-4 各脈衝參數下所濺鍍氮化鋁薄膜之表面粗糙度折線圖 41
圖4-5 各種製程參數沉積的氮化鋁的XRD透射光譜量測結果 42
圖4-6 在2D和3D視圖中自變量對AlN(002)結晶性的影響 47
圖4-7 在2D和3D視圖中自變量對AlN表面粗糙度的影響 51
圖4-8 在2D和3D視圖中自變量對AlN晶粒尺寸的影響 54
圖4-9 基於AlN (002)之FWHM、表面粗糙度及晶粒尺寸之優化圖 55
圖4-10 最佳化參數之驗證實驗薄膜品質量測 56
圖4-11 從200 nm到850 nm之OES實時測量光譜 59
圖4-12(a)電漿電火時之電壓電流圖(b)電漿電火瞬間電漿光譜強度圖 60
圖4-13(a)電源提升功率瞬間之電壓電流圖(b)電源提升功率瞬間電漿光譜強度圖 60
圖4-14 功率1000 W,脈衝頻率50 kHz,製程氣體純N2 60 sccm下(a)電漿點火不穩定之電壓電流圖(b)電漿點火不穩定之光譜強度圖 61
圖4-15 功率1200 W,脈衝頻率50 kHz,製程氣體純N2 60 sccm下電源提升功率延遲之功率圖 63

表目錄
表3-1 實驗設計之因子各級的交互變量及濺鍍參數 21

表4-1 AlN(002) FWHM模型二次反應曲面的方差分析 (ANOVA) 45
表4-2 AlN表面粗糙度模型二次反應曲面的方差分析 (ANOVA) 49
表4-3 AlN晶粒尺寸模型二次反應曲面的方差分析 (ANOVA) 53
表4-4 製程參數最佳化 56
表4-5 實際製程之模擬參數 58
表4-6製程氣體放電發光特徵波長參數 59
表4-7不同設置條件下電漿電火達穩定所需時間(T1) 62
表4-8 不同設置條件下電源提升功率達穩定所需時間(T2) 64
參考文獻 [1] W.-Y. Zhou et al., "Impact of Pulse Parameters of a DC Power Generator on the Microstructural and Mechanical Properties of Sputtered AlN Film with In-Situ OES Data Analysis," Materials, vol. 16, no. 8, p. 3015, 2023.
[2] W.-Y. Zhou et al.(2023, June). Pulsed DC parameters (reverse voltage, duty cycle, pulsed frequency) on film quality in reactive sputtered aluminum nitride films. Paper presented at the 2023 China Semiconductor Technology International Conference (CSTIC), Shanghai, China
[3] I. Safi, "Recent aspects concerning DC reactive magnetron sputtering of thin films: a review," Surface and Coatings Technology, vol. 127, no. 2-3, pp. 203-218, 2000.
[4] T.-Y. Lu et al., "Minimizing film residual stress with in situ OES big data using principal component analysis of deposited AlN films by pulsed DC reactive sputtering," The International Journal of Advanced Manufacturing Technology, vol. 114, pp. 1975-1990, 2021.
[5] A.-A. Talukder, N. Baule, M. Steinhorst, M. Shrestha, Q. H. Fan, and T. Schuelke, "Pulsed direct-current reactive sputtering of high Young′s modulus [002] oriented aluminum nitride thin films," Thin Solid Films, vol. 751, p. 139239, 2022.
[6] P. Panda et al., "Reduction of residual stress in AlN thin films synthesized by magnetron sputtering technique," Materials Chemistry and Physics, vol. 200, pp. 78-84, 2017.
[7] Y. Lu et al., "Surface morphology and microstructure of pulsed DC magnetron sputtered piezoelectric AlN and AlScN thin films," physica status solidi (a), vol. 215, no. 9, p. 1700559, 2018.
[8] A. Sanz-Hervás, M. Clement, E. Iborra, L. Vergara, J. Olivares, and J. Sangrador, "Degradation of the piezoelectric response of sputtered c-axis AlN thin films with traces of non-(0002) x-ray diffraction peaks," Applied Physics Letters, vol. 88, no. 16, p. 161915, 2006.
[9] J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, and J. Wang, "The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering," Surface and Coatings Technology, vol. 204, no. 14, pp. 2230-2239, 2010.
[10] T.-S. Yeh, J.-M. Wu, and L.-J. Hu, "The properties of TiN thin films deposited by pulsed direct current magnetron sputtering," Thin Solid Films, vol. 516, no. 21, pp. 7294-7298, 2008.
[11] J. Vlček, A. Pajdarová, and J. Musil, "Pulsed dc magnetron discharges and their utilization in plasma surface engineering," Contributions to Plasma Physics, vol. 44, no. 5‐6, pp. 426-436, 2004.
[12] J. Musil, J. Leština, J. Vlček, and T. Tölg, "Pulsed dc magnetron discharge for high-rate sputtering of thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, no. 2, pp. 420-424, 2001.
[13] A. Belkind, A. Freilich, J. Lopez, Z. Zhao, W. Zhu, and K. Becker, "Characterization of pulsed dc magnetron sputtering plasmas," New Journal of Physics, vol. 7, no. 1, p. 90, 2005.
[14] H.-H. Lo, W.-L. Chen, P. J. Wang, W. Lai, Y.-K. Fuh, and T. T. Li, "Residual stress classification of pulsed DC reactive sputtered aluminum nitride film via large-scale data analysis of optical emission spectroscopy," The International Journal of Advanced Manufacturing Technology, vol. 119, no. 11-12, pp. 7449-7462, 2022.
[15] S. C. Ferreira et al., "Box-Behnken design: An alternative for the optimization of analytical methods," Analytica chimica acta, vol. 597, no. 2, pp. 179-186, 2007.
[16] D. Solís-Cortés et al., "Ga-doped IZO films obtained by magnetron sputtering as transparent conductors for visible and solar applications," Ceramics International, vol. 45, no. 5, pp. 5577-5587, 2019.
[17] S.-Y. Lien, Y.-C. Chang, Y.-S. Cho, Y.-Y. Chang, and S.-J. Lee, "Deposition and characterization of high-efficiency silicon thin-film solar cells by HF-PECVD and OES technology," IEEE transactions on electron devices, vol. 59, no. 5, pp. 1245-1254, 2012.
[18] J. Acosta, A. Rojo, O. Salas, and J. Oseguera, "Process monitoring during AlN deposition by reactive magnetron sputtering," Surface and Coatings Technology, vol. 201, no. 18, pp. 7992-7999, 2007.
[19] S. J. Hong, G. S. May, and D.-C. Park, "Neural network modeling of reactive ion etching using optical emission spectroscopy data," IEEE Transactions on Semiconductor Manufacturing, vol. 16, no. 4, pp. 598-608, 2003.
[20] X. Yi, L. Zhao, P. Ouyang, H. Liu, T. Zhang, and G. Li, "High-quality film bulk acoustic resonators fabricated on AlN films grown by a new two-step method," IEEE Electron Device Letters, vol. 43, no. 6, pp. 942-945, 2022.
[21] A. A. Ferreira, F. J. Silva, A. G. Pinto, and V. F. Sousa, "Characterization of thin chromium coatings produced by PVD sputtering for optical applications," Coatings, vol. 11, no. 2, p. 215, 2021.
[22] A. Solovyev et al., "Application of PVD methods to solid oxide fuel cells," Applied Surface Science, vol. 310, pp. 272-277, 2014.
[23] A. Inspektor and P. A. Salvador, "Architecture of PVD coatings for metalcutting applications: A review," Surface and Coatings Technology, vol. 257, pp. 138-153, 2014.
[24] D. M. Mattox, Handbook of physical vapor deposition (PVD) processing. William Andrew, 2010.
[25] J. T. Gudmundsson, "Physics and technology of magnetron sputtering discharges," Plasma Sources Science and Technology, vol. 29, no. 11, p. 113001, 2020.
[26] J. Lopez, W. Zhu, A. Freilich, A. Belkind, and K. Becker, "Time-resolved optical emission spectroscopy of pulsed DC magnetron sputtering plasmas," Journal of Physics D: Applied Physics, vol. 38, no. 11, p. 1769, 2005.
[27] H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, "Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz‐band surface acoustic wave devices," Applied physics letters, vol. 64, no. 2, pp. 166-168, 1994.
[28] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998.
[29] 蕭宏,半導體製程技術導論,三版,全華圖書,新北市,2019。
[30] R. Chodun, K. Nowakowska-Langier, and K. Zdunek, "Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition," Materials Science-Poland, vol. 33, no. 4, pp. 894-901, 2015.
[31] 葉怡成,實驗計劃法:製程與產品最佳化,一版,五南圖書,2001。
[32] X. Shi, W. Qing, T. Marhaba, and W. Zhang, "Atomic force microscopy-Scanning electrochemical microscopy (AFM-SECM) for nanoscale topographical and electrochemical characterization: Principles, applications and perspectives," Electrochimica Acta, vol. 332, p. 135472, 2020.
[33] C.-W. Yang, S. Hwang, Y. F. Chen, C. S. Chang, and D. P. Tsai, "Imaging of soft matter with tapping-mode atomic force microscopy and non-contact-mode atomic force microscopy," Nanotechnology, vol. 18, no. 8, p. 084009, 2007.
[34] H. Liu, G. Tang, F. Zeng, and F. Pan, "Influence of sputtering parameters on structures and residual stress of AlN films deposited by DC reactive magnetron sputtering at room temperature," Journal of crystal growth, vol. 363, pp. 80-85, 2013.
[35] J. Cherng and D. Chang, "Effects of pulse parameters on the pulsed-DC reactive sputtering of AlN thin films," Vacuum, vol. 84, no. 5, pp. 653-656, 2009.
[36] J. W. Lee, J. J. Cuomo, and M. Bourham, "Plasma characteristics in pulsed direct current reactive magnetron sputtering of aluminum nitride thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 2, pp. 260-263, 2004.
[37] B.-H. Hwang, C.-S. Chen, H.-Y. Lu, and T.-C. Hsu, "Growth mechanism of reactively sputtered aluminum nitride thin films," Materials Science and Engineering: A, vol. 325, no. 1-2, pp. 380-388, 2002.
[38] V. Brien, P. Miska, B. Bolle, and P. Pigeat, "Columnar growth of ALN by rf magnetron sputtering: Role of the {1 0 1 3} planes," Journal of crystal growth, vol. 307, no. 1, pp. 245-252, 2007.
[39] H. Cheng, Y. Sun, J. Zhang, Y. Zhang, S. Yuan, and P. Hing, "AlN films deposited under various nitrogen concentrations by RF reactive sputtering," Journal of crystal growth, vol. 254, no. 1-2, pp. 46-54, 2003.
[40] J. Sellers, "Asymmetric bipolar pulsed DC: the enabling technology for reactive PVD," Surface and Coatings Technology, vol. 98, no. 1-3, pp. 1245-1250, 1998.
[41] S. Schiller, K. Goedicke, J. Reschke, V. Kirchhoff, S. Schneider, and F. Milde, "Pulsed magnetron sputter technology," Surface and Coatings Technology, vol. 61, no. 1-3, pp. 331-337, 1993.
[42] A. Aziz and S. Aziz, "Application of Box Behnken design to optimize the parameters for Kenaf-epoxy as noise absorber," in IOP conference series: materials science and engineering, 2018, vol. 454, no. 1: IOP Publishing, p. 012001.
[43] S. M. Baligidad, U. Chandrasekhar, K. Elangovan, and S. Shankar, "RSM optimization of parameters influencing mechanical properties in selective inhibition sintering," Materials Today: Proceedings, vol. 5, no. 2, pp. 4903-4910, 2018.
[44] S. Abid, R. Messadi, T. Hassine, H. Ben Daly, J. Soulestin, and M. F. Lacrampe, "Optimization of mechanical properties of printed acrylonitrile butadiene styrene using RSM design," The International Journal of Advanced Manufacturing Technology, vol. 100, pp. 1363-1372, 2019.
[45] K. Gui, P.-S. Hu, D. Ouyang, C.-H. Peng, H.-H. Yang, and P.-C. Lin, "A Study on PVD Co Pre-clean Chamber RF Reflect Power Improvement," ECS Transactions, vol. 18, no. 1, p. 611, 2009.
[46] J. Aveyard et al., "Linker-free covalent immobilization of nisin using atmospheric pressure plasma induced grafting," Journal of Materials Chemistry B, vol. 5, no. 13, pp. 2500-2510, 2017.
[47] J. Gruss-Gifford, V. Mehta, O. Van Der Straten, G. Rodriguez, M. Lippitt, and D. Canaperi, "Method for improving stability of plasma ignition in a multi-cathode magnetron PVD system," in 2020 31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), 2020: IEEE, pp. 1-4.
指導教授 傅尹坤 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明