博碩士論文 110323044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.146.178.230
姓名 李宗陽(Tsung-Yang Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磁場輔助電化學放電加工藍寶石基板之研究
(Sapphire Substrate Machining by using Electrochemical Discharge Machining with Magnetic Field Assisting)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究
★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動★ 超音波輔助電化學加工微孔陣列之研究
★ 超音波輔助磨削AGC玻璃加工之研究★ Inconel718鎳基超合金添加石墨烯粉末 微孔放電加工之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 藍寶石基板具有特殊機械性質如硬脆特性等,特別是於精微加工上,若以傳統之機械加工方法對其加工將非常困難,本研究目的為發展電化學放電加工藍寶石基板數十微米級的微孔加工之技術,採用直徑40 μm之碳化鎢圓柱形工具電極及磁場輔助方式進行,並進行一系列加工之實驗,希望能獲得較佳品質之數十微米級的微孔。本研究係藉由磁場輔助方式進行電化學放電藍寶石基板微孔加工單因子實驗分析,並探討各個加工參數如工作電壓、進給速率、脈衝週期、衝擊係數以及主軸轉速等對於藍寶石基板微孔加工之品質特性影響,加工品質特性包含微孔的入、出口孔徑及工具電極損耗情形。
電化學放電應用於數十微米級的微孔加工時,由於工具電極與工件間之加工間隙相當小,不利於電解液流入電極前端之加工區域,導致加工區域內電解液不足而無法形成絕緣氣膜,造成電極前端撞擊加工工件而斷裂,無法進行藍寶石基板電化學放電微孔加工,因此本研究採用磁場輔助電化學放電加工進行藍寶石基板微孔加工之研究,實驗結果顯示利用磁場輔助方式加工,透過磁場所產生之勞倫茲力作用,可以促進電解液流動循環及工具電極表面之絕緣氣膜薄化,從而改善數十微米級寶石電化學放電微孔加工能力與加工品質,並能夠成功完成厚度50 µm藍寶石基板之通孔加工,於工作電壓43 V、進給速率1/8 µm/sec、脈衝週期20 µs、衝擊係數30 %及主軸轉速100 rpm之最佳加工參數組合下,可獲得微孔入口平均孔徑為 78 μm,以及微孔出口平均孔徑為 41 μm之較佳微孔孔徑。
摘要(英) Sapphire substrates possess unique mechanical properties, including hardness and brittleness, and therefore, they are particularly challenging to process using conventional mechanical machining methods, especially in terms of microfabrication. In the current study, a microhole fabrication technique involving electrochemical discharge machining (ECDM) was developed to enable fabrication of sapphire substrates at tens of microns scale. A cylindrical tool electrode made of tungsten carbide with a diameter of 40 μm was used, and magnetic field assistance was implemented. A series of experiments were then conducted to identify a means of improving the quality of the tens of microns scale microhole fabrication. This study conducted a single-factor experimental analysis of the effectiveness of using ECDM with magnetic field assistance to fabricate microholes on sapphire substrates. The influences of several machining parameters, including voltage, feed rate, duration time, duty factor, and rotational speed, on the quality characteristics of the microhole fabrication on sapphire substrates were investigated. The quality characteristics included the inlet and outlet diameters of the microholes and the wear of the tool electrode.
Generally, when ECDM is used to fabricate microholes at the tens of microns scale, the small gap between the tool electrode and workpiece is bad for the flow of electrolytes into the machining area near the electrode tip. This insufficient electrolyte flow prevents the formation of an insulating gas film, resulting in collisions between the electrode tip and the workpiece, which in turn leads to fractures and renders the ECDM of microholes on sapphire substrates infeasible. Therefore, in the current study, magnetic-field-assisted ECDM was used to fabricate microholes on sapphire substrates. According to the experimental results, when magnetic field assistance was used, the generated Lorentz force promoted electrolyte circulation and facilitated thinning of the insulating gas film on the surface of the tool electrode. Consequently, the capability and quality of ECDM for microhole fabrication on sapphire substrates at the tens of microns scale were improved. Through holes were successfully fabricated on sapphire substrates with a thickness of 50 µm. When the optimal combination of machining parameters was used, including a voltage of 43 V, feed rate of 1/8 µm/sec, duration time of 20 µs, duty factor of 30%, and a rotational speed of 100 rpm, microholes with average inlet and outlet hole diameters of 78 and 41 μm, respectively, were fabricated.
關鍵字(中) ★ 電化學放電加工
★ 藍寶石基板
★ 磁場輔助
★ 微孔加工
關鍵字(英) ★ electrochemical discharge machining
★ sapphire substrate
★ magnetic field assistance
★ microhole fabrication
論文目次 摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 3
1-3文獻回顧 5
1-4 論文之架構 12
第二章 實驗基礎理論 13
2-1 電化學放電加工的基礎理論[42] 13
2-2 電化學放電加工之放電火花產生機制[43] 15
2-3 電化學放電加工之材料移除機制 18
2-4 磁場理論 20
第三章 實驗設備與材料 23
3-1 實驗方法 23
3-2 實驗設備 28
3-2-1電化學放電微孔加工設備 28
3-2-2電子天平 29
3-2-3去離子水系統 30
3-2-4電磁加熱攪拌器 31
3-2-5磁通密度儀 32
3-2-6車床 32
3-2-7可程式直流電源供應器 33
3-2-8直接數位合成函數波信號產生器 34
3-2-9金屬氧化物半導體場效電晶體 34
3-2-10斜向式顯微鏡 35
3-2-11示波器 35
3-2-12電流探棒 36
3-2-13超音波洗淨機 36
3-2-14光學顯微影像量測儀 37
3-2-15實體顯微鏡 37
3-2-16雷射共軛焦兼白光干涉儀 38
3-2-17自動濺射鍍膜機 38
3-2-18高解析熱電子型場發射掃描式電子顯微鏡 39
3-3 實驗材料 40
3-3-1藍寶石基板 40
3-3-2圓柱形工具電極 41
3-3-3輔助電極 42
3-3-4釹鐵硼磁鐵 43
3-3-5電解液 44
3-4 實驗流程與方法 45
3-4-1實驗試片製作 45
3-4-2電解液製備流程 46
3-4-3磁通密度量測 47
3-4-4實驗架設參數設定 47
3-4-5微孔孔徑之量測方式[47] 48
第四章 結果與討論 50
4-1 有、無磁場輔助方式之加工比較 50
4-2 不同參數下對電化學放電微孔加工之影響 54
4-2-1 不同工作電壓對電化學放電微孔加工之影響 56
4-2-2 不同進給速率對電化學放電微孔加工之影響 64
4-2-3 不同脈衝週期對電化學放電微孔加工之影響 74
4-2-4 不同衝擊係數對電化學放電微孔加工之影響 82
4-2-5 不同主軸轉速對電化學放電微孔加工之影響 91
第五章 結論 99
未來展望 102
參考文獻 103
參考文獻 [1] 林志光、董必正、吳曉光、崔海平、何正榮、陳彥文、李朱育,學門主題式計畫 ─ 5G智慧自動化工廠之實現 ─ 以藍寶石基板加工為例(2/3),科技部,2023。
[2] Y. Xu, J. Chen, B. Jiang, Y. Liu, & J. Ni, “Experimental investigation of magnetohydrodynamic effect in electrochemical discharge machining”, International Journal of Mechanical Sciences, Vol.142, pp. 86-96, 2018.
[3] S. R. Peruri, P. K. Chaganti, “A review of magnetic‑assisted machining processes”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol.41(10), pp. 1-17, 2019.
[4] H. Kurafuji, “Electrical discharge drilling of glass”, Annals of the CIRP, Vol.16, p. 415, 1968.
[5] V. Raghuram, T. Pramila, Y. G. Srinivasa, & K. Narayanasamy, “Effect of the circuit parameters on the electrolytes in the electrochemical discharge phenomenon”, Journal of Materials Processing Technology, Vol.52(2-4), pp. 301-318, 1995.
[6] I. Basak, A. Ghosh, “Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification”, Journal of Materials Processing Technology, Vol.62(1-3), pp. 46-53, 1996.
[7] N. Gautam, V. K. Jain, “Experimental investigations into ECSD process using various tool kinematics”, International Journal of Machine Tools and Manufacture, Vol.38(1-2), pp. 15-27, 1998.
[8] B. Bhattacharyya, B. N. Doloi, S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials”, Journal of Materials Processing Technology, Vol.95(1-3), pp. 145-154, 1999.
[9] V. K. Jain, P. M. Dixit, P. M. Pandey, “On the analysis of the electrochemical spark machining process”, International Journal of Machine Tools and Manufacture, Vol.39(1), pp. 165-186, 1999.
[10] H. J. Lim, Y. M. Lim, S. H. Kim, & Y. K. Kwak, “Self-aligned microtool and electrochemical discharge machining (ECDM) for ceramic materials”, In Optical Engineering for Sensing and Nanotechnology (ICOSN 2001), Vol.4416, pp. 348-353, 2001.
[11] C. T. Yang, S. S. Ho, B. H. Yan, “Micro Hole Machining of Borosilicate Glass through Electrochemical Discharge Machining (ECDM)”, Key Engineering Materials, Vol.196, pp. 149-166, 2001.
[12] V. Fascio, H. H. Langen, H. Bleuler, & Ch. Comninellis, “Investigations of the spark assisted chemical engraving”, Electrochemistry Communications, Vol.5(3), pp. 203-207, 2003.
[13] W. Y. Peng, Y. S. Liao, “Study of electrochemical discharge machining technology for slicing non-conductive brittle materials”, Journal of Materials Processing Technology, Vol.149(1-3), pp. 363-369, 2004.
[14] R. Wüthrich, L. A. Hof, A. Lal, K. Fujisaki, H. Bleuler, Ph. Mandin, & G. Picard, “Physical principles and miniaturization of spark assisted chemical engraving (SACE)”, Journal of Micromechanics and Microengineering, Vol.15(10), pp. 268-275, 2005.
[15] R. Wüthrich, U. Spaelter, & H. Bleuler, “The current signal in spark-assisted chemical engraving (SACE): what does it tell us?”, Journal of Micromechanics and Microengineering, Vol.16(4), pp. 779-785, 2006.
[16] D. J. Kim, Y. Ahn, S. H. Lee, Y. K. Kim, “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass”, International Journal of Machine Tools and Manufacture, Vol.46(10), pp. 1064-1067, 2006.
[17] R. Wüthrich, L. A. Hof, “The gas film in spark assisted chemical engraving (SACE)—A key element for micro-machining applications”, International Journal of Machine Tools and Manufacture, Vol.46(7-8), pp. 828-835, 2006.
[18] J. West, A. Jadhav, “ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities”, Journal of Micromechanics and Microengineering, Vol.17(2), pp. 403-409, 2007.
[19] Z. P. Zheng, H. C. Su, F. Y. Huang, & B. H. Yan, “The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharge microdrilling process”, Journal of Micromechanics and Microengineering, Vol.17(2), pp. 265-272, 2007.
[20] Z. P. Zheng, J. K. Lin, F. Y. Huang, & B. H. Yan, “Improving the machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”, Journal of Micromechanics and Microengineering, Vol.18(2), p. 025014, 2008.
[21] M. Jalali, P. Maillard, R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol.19(4), p. 045001, 2009.
[22] C. K. Yang, C. P. Cheng, C. C. Mai, A. Cheng Wang, J. C. Hung, & B. H. Yan, “Effect of surface roughness of tool electrode materials in ECDM performance”, International Journal of Machine Tools and Manufacture, Vol.50(12), pp. 1088-1096, 2010.
[23] C. K. Yang, K. L. Wu, J. C. Hung, S. M. Lee, J. C. Lin, & B. H. Yan, “Enhancement of ECDM efficiency and accuracy by spherical tool electrode”, International Journal of Machine Tools and Manufacture, Vol.51(6), pp. 528-535, 2011.
[24] S. K. Jui, A. B. Kamaraj, M. M. Sundaram, “High aspect ratio micromachining of glass by electrochemical discharge machining (ECDM)”, Journal of Manufacturing Processes, Vol.15(4), pp. 460-466, 2013.
[25] M. R. Razfar, A. Behroozfar, J. Ni, “Study of the effects of tool longitudinal oscillation on the machining speed of electrochemical discharge drilling of glass”, Precision Engineering, Vol.38(4), pp. 885-892, 2014.
[26] B. Jiang, S. Lan, J. Ni, Z. Zhang, “Experimental investigation of spark generation in electrochemical discharge machining of non-conducting materials”, Journal of Materials Processing Technology, Vol.214(4), pp. 892-898, 2014.

[27] Z. Zhang, L. Huang, Y. Jiang, G. Liu, X. Nie, H. Lu, & H. Zhuang, “A study to explore the properties of electrochemical discharge effect based on pulse power supply”, The International Journal of Advanced Manufacturing Technology, Vol.85(9-12), pp. 2107-2114, 2016.
[28] M. Hajian, M. R. Razfar, S. Movahed, “An experimental study on the effect of magnetic field orientations and electrolyte concentrations on ECDM milling performance of glass”, Precision Engineering, Vol.45, pp. 322-331, 2016.
[29] N. Sabahi, M. R. Razfar, M. Hajian, “Experimental investigation of surfactant-mixed electrolyte into electrochemical discharge machining (ECDM) process”, Journal of Materials Processing Technology, Vol.250, pp. 190-202, 2017.
[30] N. Ratten, R. S. Mulik, “Improvement in material removal rate (MRR) using magnetic field in TW-ECSM process”, Materials and Manufacturing Processes, Vol.32(1), pp. 101-107, 2017.
[31] N. Ratten, R. S. Mulik, “Experimental Set Up to Improve Machining Performance of Silicon Dioxide (Quartz) in Magnetic Field Assisted TW-ECSM Process”, Silicon, Vol.10, pp. 2783-2791, 2018.
[32] M. Y. Lin, T. H. Tsai, L. W. Hourng, & W. K. Wang, “The effects of magnetic field and ethanol addition on the electrochemical discharge machining”, The International Journal of Advanced Manufacturing Technology, Vol.105, pp. 2461-2467, 2019.

[33] M. Singh, S. Singh, “Electrochemical discharge machining: A review on preceding and perspective research”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol.233(5), pp. 1425-1449, 2019.
[34] D. K. Mishra, K. Pawar, P. Dixit, “Effect of Tool Electrode-Workpiece Gap in the Microchannel Formation by Electrochemical Discharge Machining”, ECS Journal of Solid State Science and Technology, Vol.9(3), p. 034011, 2020.
[35] C. C. Ho, J. C. Chen, “Micro-Drilling of Sapphire Using Electro Chemical Discharge Machining”, Micromachines, Vol.11(4), p. 377, 2020.
[36] L. Zhang, Z. Yuan, S. Jiang, H. Shen, F. Cao, Z. Ning, Y. Huang, D. Xing, H. Zuo, J. Han, & J. Sun, “Cavity etching evolution on the A-plane of sapphire crystal in molten KOH etchant”, Journal of Crystal Growth, Vol.552, p. 125926, 2020.
[37] Y. Xu, B. Jiang, “Machining performance enhancement of deep micro drilling using electrochemical discharge machining under magnetohydrodynamic effect”, The International Journal of Advanced Manufacturing Technology, Vol.113(3-4), pp. 883-892, 2021.
[38] A. D. Oza, A. Kumar, V. Badheka, A. Arora, M. Kumar, C. I. Pruncu, & T. Singh, “Improvement of the Machining Performance of the TW-ECDM Process Using Magnetohydrodynamics (MHD) on Quartz Material”, Materials, Vol.14(9), p. 2377, 2021.

[39] T. Singh, B. Appalanaidu, A. Dvivedi, “Improvement in energy channelization behaviour during micro hole formation in Y-SZ ceramic with magnetic field assisted ECSM process”, Measurement, Vol.194, p. 111079, 2022.
[40] K. V. J. Bhargav, P. S. Balaji, R. K. Sahu, & J. K. Katiyar, “Exemplary approach using tool rotation-assisted µ-ECDM for CFRP composites machining”, Materials and Manufacturing Processes, pp.1-13, 2022.
[41] R. Singh, D. Singh, & J. Singh, “Parametric analysis and optimization of magnetic field-assisted electrochemical spark drilling (MF-ECSD)”, Engineering Research Express, Vol.5(2), p. 025036, 2023.
[42] 鄭志平,「微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究」,國立中央大學,博士論文,2008。
[43] 楊程光,「電化學放電加工法應用於石英的精微加工研究」,國立中央大學,博士論文,2011。
[44] C. P. Cheng, K. L. Wu, C. C. Mai, Y. S. Hsu, & B. H. Yan, “Magnetic field-assisted electrochemical discharge machining”, Journal of Micromechanics and Microengineering, Vol.20(7), p. 075019, 2010.
[45] 蔡依婷,「啄鑽式電化學放電加工藍寶石基板之研究」,國立中央大學,碩士論文,2022。
[46] 許玉山,「硼矽玻璃的磁場輔助電化學放電加工技術研究」,國立中央大學,碩士論文,2008。
[47] 劉柏億,「脈衝複合偏壓電化學放電加工石英晶圓之研究」,國立中央大學,碩士論文,2021。
[48] C. M. Liu, J. C. Chen, Y. C. Huang, & H. L. Hsieh, “The morphology of etch pits on a sapphire surface”, Journal of Physics and Chemistry of Solids, Vol. 69(2-3), pp. 572-575, 2008.
[49] L. Zhang, J. Sun, H. Zuo, Z. Yuan, J. Zhou, D. Xing, & J. Han, “Tridimensional morphology and kinetics of etch pit on the {0001} plane of sapphire crystal”, Journal of Solid State Chemistry, Vol. 192, pp. 60-67, 2012.
[50] 林軍屹,「應用可調變磁場輔助電化學放電加工石英之研究」,國立中央大學,碩士論文, 2012。
[51] 鍾森富,「電化學放電加工應用於藍寶石加工之研究」,國立中央大學,碩士論文,2015。
[52] 余紹華,「電化學放電加工藍寶石極間現象觀察與加工技術研究」,國立中央大學,碩士論文,2022。
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2023-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明