博碩士論文 109323125 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.147.84.90
姓名 李士揚(SHIH-YANG LI)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱處理對IN 718鎳基超合金多孔金屬 微結構和機械性質之影響
(Effect of heat treatment on microstructure and mechanical properties of IN 718 nickel based superalloy metal foam)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)、機械性質(硬度、壓縮)等試驗,探討燒結態、以及經兩種固溶(1020℃、940℃)、時效(兩段式720°C*8h→620°C*8h)處理之IN 718鎳基超合金多孔合金微結構和機械性質之影響。結果顯示,當合金燒結態時,可以觀察到微量的NbC碳化物存在於晶界上,此時合金微結構為γ基地和NbC碳化物析出相,其硬度、壓縮平台應力、及能量吸收值分別為219Hv、370MPa與63J/g。當進行1020℃(高溫)固溶處理後,其微結構為γ基地和NbC碳化物析出相所組成,其硬度、壓縮平台應力、及能量吸收值分別為189Hv、200MPa與29J/g。
再經時效處理後,隨著強化相γ′相(Ni3(Al,Ti))及γ"相(Ni3(Nb))的析出,其硬度、壓縮平台應力、及能量吸收值分別提升至518Hv、520MPa與64J/g。其值均較燒結態大幅提高。當合金進行940℃(低溫)固溶處理後,觀察到大量針狀δ相(Ni3(Nb))析出於γ基地,此時合金微結構為γ基地與δ相(Ni3(Nb))所組成;其硬度、壓縮平台應力、及能量吸收值分別為232Hv、450MPa與66J/g。相較1020℃(高溫)固溶處理(189Hv),硬度升高約6%,這是因為δ相(Ni3(Nb))於固溶處理的析出所導致,但也降低了基地過飽和程度,導致時效處理後,使γ"強化相析出量減少,時效處理後其硬度、平台應力、與能量吸收分別為434Hv、460MPa與70J/g,均低於1020℃(高溫)固溶時效合金,其值也均較燒結態大幅提高。
摘要(英) This study investigates the influence of sintering conditions and two different solid solution treatments (1020℃, 940℃) followed by aging treatment (two-stage: 720°C8h→620°C8h) on the microstructure and mechanical properties of porous IN 718 nickel-based superalloy. The examinations include optical microscopy (OM), scanning electron microscopy (SEM), and mechanical tests (hardness, compression).

The results demonstrate that in the sintered state, trace amounts of NbC carbides can be observed at grain boundaries. The microstructure consists of a γ matrix and precipitates of NbC carbides. The corresponding hardness, compression plateau stress, and energy absorption value are 219Hv, 370MPa, and 63J/g, respectively.

Following the high-temperature (1020℃) solid solution treatment, the microstructure is composed of a γ matrix and precipitates of NbC carbides. The hardness, compression plateau stress, and energy absorption value are reduced to 189Hv, 200MPa, and 29J/g, respectively.

Subsequent aging treatment results in the precipitation of strengthening phases, γ′ (Ni3(Al,Ti)) and γ" (Ni3(Nb)), leading to significant improvements in hardness, compression plateau stress, and energy absorption value, which reach 518Hv, 520MPa, and 64J/g, respectively. These values are substantially higher compared to the sintered state.
After the low-temperature (940℃) solid solution treatment, a significant amount of needle-like δ phase (Ni3(Nb)) is observed within the γ matrix. The microstructure consists of a γ matrix and δ phase (Ni3(Nb)). The corresponding hardness, compression plateau stress, and energy absorption value are 232Hv, 450MPa, and 66J/g, respectively.
The hardness increases by approximately 6% compared to the 1020℃ (high-temperature) solid solution treatment due to the precipitation of the δ phase (Ni3(Nb)), which reduces the degree of matrix supersaturation. However, this also leads to a decreased amount of γ" strengthening phase during aging treatment. Consequently, the hardness, plateau stress, and energy absorption after aging treatment are 434Hv, 460MPa, and 70J/g, respectively, which are lower than those of the 1020℃ (high-temperature) solid solution and aging alloy but still significantly higher than the sintered state.
關鍵字(中) ★ 鎳基超合金
★ IN 718
★ 多孔合金
★ 壓縮
關鍵字(英) ★ Nickel based superalloy
★ IN 718
★ metal foams
★ compressive
論文目次 摘要 i
Abstract iii
謝誌 v
總目錄 vi
圖目錄 viii
表目錄 x
壹、前言與文獻回顧 1
1.1前言 1
1.2多孔合金簡介 3
1.3鎳基超合金簡介 5
1.4 IN 718鎳基超合金簡介 6
1.5 IN 718鎳基超合金元素與影響 8
1.6 IN 718鎳基超合金之相組成 11
1.7 IN 718鎳基超合金之熱處理 14
貳、實驗步驟與方法 19
2.1生胚製作 19
2.2固溶、時效熱處理 21
2.3微結構分析 23
2.3.1光學顯微鏡(Optical Microscopy, OM) 23
2.3.2掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 23
2.4機械性質分析 24
2.4.1硬度試驗(Hardness, HV) 24
2.4.2壓縮測試 25
參、結果與討論 26
3.1多孔IN 718鎳基超合金物理性質 26
3.2多孔IN 718鎳基超合金微結構分析 27
3.3多孔IN 718鎳基超合金機械性質 34
肆、結論 41
伍、參考資料 43
參考文獻 參考資料
[AKC] E. Akc, A. Gur, A Review on Superalloys and IN718 Nickel-Based
INCONEL Superalloy, Periodicals of Engineering and Natural Sciences, pp.15-27 (2015)

[ANB] N. Anb , B. K. Gup, P. Sa, M. Pa, O. Rb, J. F. K. Ra, J. Sa, Effect of Heat Treatment on the Microstructure and Mechanical Properties of Inconel 718, Materials Today: Proceedings, pp. 7716-7724 (2018)

[ASTM] ASTM E92-17, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials1 (2017)

[AVI] M. G. Avi, M. Por, A. Rab, Ballistic Performance of Composite Metal Foams, Composite Structures, pp. 202-211 (2015)

[AZA] S. Aza, L.Y. Wei, R. War, Delta phase precipitation in Inconel 718, Materials Characterization, pp. 7-16 (2004)

[BAN] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science 46, pp. 559–632 (2001)

[BET] W. Bet, J. Hes, The Nimonic Alloys, and Other Nickel-Base High-Temprature Alloys, New York, pp. 1-498 (1974)

[CHA] S. H. Cha, S. C. Lee, K.T. Hua, C. Lia, Effects of Solid-Solution Treatment on Microstructure and Mechanical Properties of HIP treated Alloy 718, Applied Mechanics and Materials, Vol. 117-119, pp. 1315-1318 (2012)

[CHA1] L. Cha, W. Sun, Y. Cui, F. Zha, R Yan, Effect of heat treatment on microstructure and mechanical properties of the hot-isostatic-pressed Inconel 718 powder compact, Journal of Alloys and Compounds, pp. 227-232 (2014)

[CHE] Y. Che, N. Wang, O. Ola, Y. Xia, Y. Zhu, Porous ceramics: Light in weight but heavy in energy and environment technologie, Materials Science and Engineering R:Reports, Art. 100589 (2021)

[COL] J. P. COL, S.H WON, J. C. PHI, J. K. TIE, The Effect of Varying AI, Ti, and Nb Content on the Phase Stability of INCONEL 718, Metallurgical Transactions A, pp. 1657-1666 (1988)

[EVA] G. Evans, J.W. Hutchinson, M. F. Ashby, Multifunctionality of cellular metal system Pro, Progress in Materials Science V.43, pp.171-22 (1998)

[EZU] E.O. Ezu, Z.M. Wan, A.R. Mac, The machinability of nickel-based alloys: a review, Journal of Materials Processing Technology, pp. 1–16 (1999)

[GIB] L. J. Gib, M. F. Ash, Cellular Solids, Structures and Propertie, 2nd Ed, Cambridge University Press, Cambridge, pp.1-3 (1997)

[GOO] R. Goo, Porous metals: foams and sponges Advances, Powder Metallurgy Properties, pp. 273-307 (2013).

[HUA] Q Hua, M Aze, A. Rit, Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured INCONEL 718, Metallurgical and Materials Transactions A, pp. 2410-2422 (2009)

[INS] Insg Secretariat Briefing Paper, Nickel-Based Super Alloys, No.20 (2013)

[KAK] P. Kak, On the distribution of particles in propellant solids, Acta Mechanica, V.231 (2020)

[KUO] C. M. Kuo, Y. T. Yan, H. Y. Bor, C. N. Wei, C. C. Tai, Aging effects on the microstructure and creep behavior of Inconel 718 superalloy, Materials Science and Engineering: A, pp. 289-294 (2009)

[LEI] J.Lei, Y. Zheng, J. Yu, P. X. Lu, N. Du, P/M Nickel-BasedSuperalloy, AEROSPACE MATERIAIS & TECHNOLOGY, pp. 18-22 (2011)

[LIU] Y. Liu, Q. Guo, C. Li, Y. Mei, Recent progress on evolution of precipitates in IN 718 superalloy, Acta Metallurgica Sinica, pp. 1259-1266 (2016)

[MOR] F. G. Mor, Commercial Applications of Metal Foams: Their Properties and Production, Materials (2016)

[MOS] A. Mos, I. P. Rub, V. Bra, M. Jah, M. Med, Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments, Metals, pp. 196 (2007)

[PAN] X. J. Pan, D. J. Dwy, M. Gao, P. Val, R. P. Wei, Surface enrichment and grain boundary segregation of niobium in inconel 718 single- and poly-crystals, Scripta Metallurgica et Materialia, pp. 345-350 (1994)

[PSL] P. S. Liu, G. F. Chen ,Application of Porous Metals, Porous Materials pp. 113-188 (2014)

[QAD]S.I.A. Qad, G.A. Har, M.F. Wan, Influence of Tool Tip Temperature on Crater Wear of Ceramic Inserts During Turning Process of Inconel-718 at Varying Hardness, Tribology in Industry, pp. 310-326 (2020)

[RAB] A. Rab, L. Ven, N. Ree, N. You, B. P. Nev, Processing and Characterization of a New Composite Metal Foam, Materials Transactions, pp. 2148-2153 (2006)

[RAM] U. Ram, Variability in mechanical properties of a metal foam, Acta Materialia, V. 52, pp. 869-876 (2004)

[RAO] G.A Rao, M Kum, M. Sri, D. S. Sar,Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718, Materials Science and Engineering A, Vol. 355, pp. 114-125 (2003)

[SAD] O. Sad, I. Ant, S. Har, O. Lev, E. Niz, B. Ost, A. Sch, E. Gal,
Y. Kiv, G. Ben, Experimental investigation of dynamic properties of aluminum foams, Journal of Structural Engineering, Vol. 131, No. 8 (2005)

[SIM] C. T. Sims, A contemporary view of nickel-base superalloys, Journal of metal (1966)

[SLA] C. Sla, M. Abd, Structural characterization of the aged Inconel 718, Journal of Alloys and Compounds, pp. 277-284 (2000)

[SMI] G.D. Smi, S.J. Pat, The role of niobium in wrought precipitation-hardened nickel-base alloys, The Minerals, Metals & Materials Society (TMS), pp. 135-154 (2005)

[SRI] S. Sri, K.S. Pra . D. Gop, M.C. Pan, Stress Rupture Property-Microstructure Correlation in Hot-Rolled Superalloy 718, Materials Characterization 35, pp. 93-98 (1995)

[STO] M. G. Sto, W. W. Ger, Structure property continuum synthesis of ductile fracture in inconel alloy 718, Metallurgical Transactions A ,
pp. 649-658 (1978)

[SUG] Y. Sug, A. Rab, A. G. Eva, A. M. Har, N. A. Fle, Compression fatigue of a cellular Al alloy, Materials Science and Engineering: A,
V. 269, pp. 38-48 (1999)

[SUN] M. Sun, P. Muk, S. Ban, Carbide Precipitation in Nickel Base Superalloys 718 and 625 and Their Effect on Mechanical Properties, Materials Science Division, pp. 367-378 (1997)

[SUP] INCONEL® alloy 718, Special Metals Corporation (2007)

[WAC] E. F. Wac, H. J. Rac, Phase Stability and Aging Response of Tic Reinforced Alloy 718, The Minerals, Metals & Materials Society (TMS), pp. 599-610 (1989)

[YOU] X. You, S. Shi, Y. Tan, L. Zha, J. Zhe, X. Zhu, Y. Lia, Q. You, P. Lia, W. Lon, The evaporation behavior of alloy elements during electron beam smelting of Inconel 718 alloy, Vacuum, V. 169 (2019)

[YUA] H. Yua, W. C. Liu, Effect of the δ phase on the hot deformation behavior of Inconel 718, Materials Science and Engineering: A, pp 281-289 (2005)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2023-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明