博碩士論文 110323025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.119.112.154
姓名 郭咨妤(Tzu-Yu Kuo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 人工智慧應用於石英晶圓放電加工品質之預測
(Application of Artificial Intelligence for Predicting Machining Quality in Electrical Discharge Machining of Quartz Wafer)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 放電加工(EDM)是一種極為成熟的技術,其非接觸式加工方式具有明顯的優勢,已被廣泛應用於金屬加工的各個領域中。近期,在石英振盪器封裝上使用了新型的晶圓級封裝技術,並且將封裝的材料從原本的陶瓷蓋板改為石英晶圓。然而,由於石英晶圓的非導電特性,無法直接進行EDM加工。因此,本研究採用輔助電極的方法,賦予石英晶圓表面導電性,以實現對硬脆石英晶圓的EDM加工。同時,本研究開發了有效且可靠的深度神經網路(DNN)模型,對EDM加工後的加工品質進行預測和優化。
在本研究中,首先選擇了四個可調整的加工參數進行了81組的全因子實驗。接著,利用隨機森林回歸演算法(RFRM)以及響應表面演算法(RSM)確認了這四個加工參數對加工品質的顯著影響,並適用於作為DNN預測模型的輸入參數。本研究透過粒子群演算法(PSO)來決定DNN預測模型的架構,並藉由五摺交叉驗證方法進行微調,獲得了一個具有四層隱藏層的最佳DNN預測模型。所建立的DNN模型在加工品質(包括鑽孔入口及出口直徑)的預測展現出良好表現,無論在數據訓練集、驗證集及測試集的預測上,都具有極低的絕對百分比誤差值(MAPE)和非常高的決定係數值(R2)。進一步將此DNN預測模型結合PSO,找出可產生出最佳加工品質的最佳化加工參數組合並進行實驗驗證。實驗結果與模型預測的最佳加工品質有良好的一致性,證明了本研究所建立以人工智慧為基礎的模型具有高效性及可靠性,能夠在石英晶圓上實現最佳的放電加工鑽孔品質。
摘要(英) Electrical Discharge Machining (EDM) is a highly mature technology widely used in various domains of metal processing. Its non-contact machining approach offers significant advantages. Recently, a novel wafer-level packaging technique has been employed in the packaging of quartz oscillator wafers. However, direct EDM drilling was not feasible for the quartz oscillator wafer due to its non-conductive characteristics. Hence, this study used the method of assisting electrode to impart conductivity to the surface of quartz wafer, enabling EDM drilling of the hard and brittle quartz wafer. Additionally, an effective Deep Neural Network (DNN) model was developed to predict and optimize the EDM machining quality.
In this study, a total of eighty-one sets of full-factorial experiments were conducted by selecting four adjustable machining parameters, namely Ton, Toff, LV, and GAP. The significant effects of these four machining parameters on the machining quality were analyzed and confirmed using the Random Forest Regression Model (RFRM) and the Response Surface Method (RSM). They were then appropriately used as the input parameters of the DNN predictive model. The Particle Swarm Optimization (PSO) algorithm was employed to determine the architecture of the DNN predictive model, which was further fine-tuned through five-fold cross-validation (CV), resulting in an optimal DNN model with four hidden layers. The established DNN model exhibited excellent performance in predicting the machining quality, including the inlet and outlet diameters, with extremely low Mean Absolute Percentage Error (MAPE) and very high Coefficient of Determination (R2) for the training, validation, and testing datasets. Subsequently, this predictive model was combined with PSO to find the optimal combination of machining parameters for achieving the best machining quality. The good agreement between the validation experiments and the predictions of optimal machining quality demonstrates the effectiveness and reliability of the developed artificial-intelligent based model in achieving optimal EDM drilling quality of quartz wafers.
關鍵字(中) ★ 放電加工
★ 人工智慧
★ 石英晶圓
關鍵字(英) ★ Electrical Discharge Machining (EDM)
★ Artificial Intelligence(AI)
★ quartz wafer
論文目次 ABSTRACT I
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
1. INTRODUCTION 1
1.1 Applications and Properties of Quartz 1
1.2 Electrical Discharge Machining 3
1.3 Machine Learning for Quality Prediction 5
1.4 Purpose 7
2. EXPERIMENT 8
2.1 Material and Sample Preparation 8
2.2 Experimental Setup and Procedure 9
2.3 Measurement of Geometrical Characterization 12
3. DNN MODEL 14
3.1 Dataset Preprocessing 15
3.2 Structure of DNN 16
3.3 Selection of DNN Model 19
3.4 Optimization of Machined Quality 20
4. RESULTS AND DISCUSSION 22
4.1 Experimental Results 22
4.2 Effect of Adjustable Parameters on Machined Quality 26
4.3 Selection of Optimal DNN Model 32
4.4 Optimization of Machined Quality and Experimental Validation 36
5. CONCLUSIONS 40
REFERENCES 42
APPENDIX. SUPPLEMENTARY MATERIALS 46
參考文獻 1. K. H. Nguyen, P. A. Lee, and B. H. Kim, “Experimental Investigation of ECDM for Fabricating Micro Structures of Quartz,” International Journal of Precision Engineering and Manufacturing, Vol. 16, pp. 5-12, 2015.
2. V. Rajput, S. S. Pundir, M. Goud, and N. M. Suri, “Multi-Response Optimization of ECDM Parameters for Silica (Quartz) Using Grey Relational Analysis,” Silicon, Vol. 13, pp. 1619-1640, 2021.
3. C. H. Yang and H. P. Tsui, “Study on Ultrasonic-Assisted WECDM of Quartz Wafer with Continuous Electrolyte Flow,” The International Journal of Advanced Manufacturing Technology, Vol. 118, pp. 1061-1076, 2022.
4. EDNTaiwan Electronic Technology Design, CMEMS Technology Using CMOS Process, https://archive.edntaiwan.com/www.edntaiwan.com/ART_8800514025_3000004_TA_2bedd124.HTM, accessed on March 4, 2023.
5. Semiconductor Engineering, What’s What in Advanced Packaging, https://semiengineering.com/whats-what-in-advanced-packaging, accessed on March 4, 2023.
6. K. Maity and H. Mishra, “ANN Modelling and Elitist Teaching Learning Approach for Multi-Objective Optimization of µ-EDM,” Journal of Intelligent Manufacturing, Vol. 29, pp. 1599-1616, 2018.
7. Y. P. Zeng, C. L. Lin, H. M. Dai, Y. C. Lin, and J. C. Hung, “Multi-Performance Optimization in Electrical Discharge Machining of Al2O3 Ceramics Using Taguchi Base AHP Weighted TOPSIS Method,” Processes, Vol. 9, 1647, 2021.
8. M. Kunieda, B. Lauwers, K. P. Rajurkar, and B. M. Schumacher, “Advancing EDM Through Fundamental Insight into the Process,” CIRP Annals, Vol. 54, pp. 64-87, 2005.
9. K. H. Ho and S. T. Newman, “State of the Art Electrical Discharge Machining (EDM),” International Journal of Machine Tools & Manufacture, Vol. 29, pp. 1287-1300, 2003.
10. J. Kozak, K. P. Rajurkar, and N. Chandarana, “Machining of Low Electrical Conductive Materials by Wire Electrical Discharge Machining (WEDM),” Journal of Materials Processing Technology, Vol. 149, pp. 266-271, 2004.
11. N. Mohri, Y. Fukuzawa, T. Tani, N. Saito, and K. Furutani, “Assisting Electrode Method for Machining Insulating Ceramics,” CIRP Annals - Manufacturing Technology, Vol. 45, pp. 201-204, 1996.
12. A. Schubert, H. Zeidler, R. Kühn, M. H. Oschätzchen, S. Flemmig, and N. Treffkorn, “Investigation of Ablation Behaviour in Micro-EDM of Nonconductive Ceramic Composites ATZ and Si3N4-TiN,” Procedia CIRP, Vol. 42, pp. 727-732, 2016.
13. A. Rashid, A. Perveen, and M. P. Jahan, “Understanding Novel Assisted Electrode from a Theoretical and Experimental Perspectives for EDM of Aluminum Nitride Ceramics,” The International Journal of Advanced Manufacturing Technology, Vol. 116, pp. 2959-2973, 2021.
14. B. Shinde and R. Pawade, “Study on Analysis of Kerf Width Variation in WEDM of Insulating Zirconia,” Materials and Manufacturing Processes, Vol. 36, pp. 1010-1018, 2021.
15. M. Srivastava, “Study of Machining Non-Conducting Materials Using EDM,” International Journal of Engineering Trends and Technology, Vol. 34, pp. 88-92, 2016.
16. D. K. Panda and R. K. Bhoi, “Artificial Neural Network Prediction of Material Removal Rate in Electro Discharge Machining,” Materials and Manufacturing Processes, Vol. 20, pp. 645-672, 2005.
17. S. N. Sahu and N. C. Nayak, “Multi-Objective Optimisation of EDM Process Using ANN Integrated with NSGA-II Algorithm,” International Journal of Manufacturing Technology and Management, Vol. 32, pp. 381-395, 2018.
18. S. K. Tamang, N. Natarajan, and M. Chandrasekaran, “Optimization of EDM Process in Machining Micro Holes for Improvement of Hole Quality,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 39, pp. 1277-1287, 2017.
19. L. Zhang, Z. Jia, F. Wang, and W. Liu, “A hybrid Model Using Supporting Vector Machine and Multi-Objective Genetic Algorithm for Processing Parameters Optimization in Micro-EDM,” The International Journal of Advanced Manufacturing Technology, Vol. 51, pp. 575-586, 2010.
20. K. P. Somashekhar, N. Ramachandran, and J. Mathew, “Optimization of Material Removal Rate in Micro-EDM Using Artificial Neural Network and Genetic Algorithms,” Materials and Manufacturing Processes, Vol. 25, pp. 467-475, 2010.
21. R. Eberhart and J. Kennedy, "A New Optimizer Using Particle Swarm Theory,” In MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, October 4-6, 1995.
22. G. E. Hinton, Si. Osindero, and Y. W. Teh, “A Fast Learning Algorithm for Deep Belief Nets,” Neural Computation, Vol. 18, pp. 1527-1554, 2006.
23. Amazon AWS, What is Deep Learning, https://aws.amazon.com/tw/what-is/deep-learning, accessed on March 22, 2023.
24. N. I. Chernov and G. A. Ososkov, “Effective Algorithms for Circle Fitting,” Computer Physics Communications, Vol. 33, pp. 329-333, 1984.
25. H. Jia, J. Lin, and J. Liu, “An Earthquake Fatalities Assessment Method Based on Feature Importance with Deep Learning and Random Forest Models,” Sustainability, Vol. 11, 2727, 2019.
26. A. Safari, “A PSO Procedure for a Coordinated Tuning of Power System Stabilizers for Multiple Operating Conditions,” Journal of Applied Research and Technology, Vol. 11, pp. 665-673, 2013.
27. R. R. Picard and R. D. Cook, “Cross-Validation of Regression Models,” Journal of the American Statistical Association, Vol. 79, pp.575-583, 1984.
28. P. Kuppan, A. Rajadurai, and S. Narayanan, “Influence of EDM Process Parameters in Deep Hole Drilling of Inconel 718,” The International Journal of Advanced Manufacturing Technology, Vol. 38, pp. 74-84, 2008.
29. M. K. Dikshit, J. Anand, D. Narayan, and S. Jindal, “Machining Characteristics and Optimization of Process Parameters in Die-Sinking EDM of Inconel 625,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 41, 302, 2019.
30. A. Bilal, A. Perveen, D. Talamona, and M. P. Jahan, “Understanding Material Removal Mechanism and Effects of Machining Parameters During EDM of Zirconia-Toughened Alumina Ceramic,” Micromachines, Vol. 12, 67, 2021.
31. M. Bhaumik and K. Maity, “Effect of Electrode Materials on Different EDM Aspects of Titanium Alloy,” Silicon, Vol. 11, pp. 187–196, 2019.
32. L. Cheng, J. D. Vos, P. Zhao, M. Yang, and F. Witlox, “Examining Non-Linear Built Environment Eeffects on Elderly’s Walking: A Random Forest Approach,” Transportation Research Part D: Transport and Environment, Vol. 88, 102552, 2020.
33. M. N. Rohman, J. R. Ho, P. C. Tung, H. P. Tsui and C. K. Lin , “Prediction and Optimization of Geometrical Quality for Pulsed Laser Cutting of Non-Oriented Electrical Steel Sheet,” Optics & Laser Technology, Vol.149,107847, 2022.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2023-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明