博碩士論文 110323103 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.219.137.74
姓名 官敬堯(Ching-Yao Kuan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於加速度計低功耗精確量測步數演算法在穿戴式裝置的實現
(Low Power Implementation of an Accurate Accelerometer-Based Step Counting Algorithm in Wearable Device)
相關論文
★ 二十一點遊戲之正確期望值模型:以遞迴之方式實行隨機訊號處理★ 擾動輔助經驗模態分解之邊界效應的理論與數值分析
★ 基於加速度計的高精度步數演算法★ 經驗模態分解局部性之近場性質的一些證明
★ 擾動輔助EMD演算法在穿戴式嵌入式裝置中MCU的即時運算★ 總體相位經驗模態分解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,每日的行走步數普遍被視為自我健康監測的指標,市面上已有許多穿戴式裝置都具計算行走步數的功能,若能開發一種低功耗且精確量測步數的演算法,則能夠減少裝置的充電次數,進而提升裝置的方便程度以及延長其電池壽命。我們以自適性自相關函數計步(Adaptive Autocorrelation Step Counting, APASC)演算法為基礎,分析並最佳化其核心演算法自相關函數的計算量,再簡化此演算法的流程,提出一種低功耗的自適性自相關函數計步(Low Power Adaptive Autocorrelation Step Counting, LPAPASC)演算法,我們對此演算法進行了準確度分析,並在穿戴式裝置上實現之。最終,本研究提出的LPAPASC演算法與APASC演算法相比,在長達22小時的資料測試中,其準確率僅降低0.86%。然而,LPAPASC演算法在穿戴式裝置上的執行所需的耗電量卻比APASC演算法降低了88%。
摘要(英) In recent years, the number of steps taken per day has generally been regarded as an indicator of self-health monitoring. There are many wearable devices on the market track user′s daily step count. If an algorithm with low power consumption and accurate step measurement can be developed, the charging times of the device can be reduced, thereby improving the convenience of the device and prolonging its battery life. Based on the Adaptive Autocorrelation Step Counting (APASC) algorithm, we analyze and optimize the calculation amount of the autocorrelation function of its core algorithm, then simplify the process of this algorithm, propose Low Power Adaptive Autocorrelation Step Counting (LPAPASC) algorithm and implemented it in wearable device. Finally, compared with the APASC algorithm, the accuracy of the LPAPASC algorithm proposed in this study is only reduced by 0.86% in the 22-hour data test. However, the power consumption required for the execution of the LPAPASC algorithm in wearable device is 88% lower than that of the APASC algorithm.
關鍵字(中) ★ 量測步數
★ 計算時間
★ 自相關函數
★ 穿戴式裝置
★ 功耗
關鍵字(英) ★ step counting
★ computation time
★ autocorrelation function
★ wearable device
★ power consumption
論文目次 中文摘要........................................i
英文摘要.......................................ii
誌謝..........................................iii
目錄...........................................iv
圖目錄.........................................vi
表目錄........................................vii
符號說明.....................................viii
一、緒論........................................1
1-1研究動機...................................1
1-2文獻回顧...................................1
1-3研究目的...................................3
1-4章節結構...................................3
二、自適性自相關函數計步演算法的基礎...............5
2-1自適性自相關函數計步演算法...................5
2-2演算法的工作記憶體.........................10
2-3演算法的計算量分析.........................10
三、低功耗的自適性自相關計步演算法................15
3-1最佳化自相關函數的計算量....................15
3-1-1降低滯後範圍...........................15
3-1-2降低訊號取樣頻率.......................16
3-1-3最佳化前後比較.........................17
3-2最佳化相似度的計算量.......................18
3-3簡化演算法的流程...........................23
3-4最佳化後的演算法流程.......................24
3-5演算法在最佳化前後之準確率分析..............26
四、嵌入式微控制器實驗..........................30
4-1計步演算法執行時間測試.....................30
4-1-1硬體規格..............................30
4-1-2韌體架構..............................31
4-1-3實驗結果..............................31
4-2計步演算法之功耗計算.......................33
五、總結與結論..................................38
5-1總結......................................38
5-2結論......................................39
參考文獻.......................................40
參考文獻 [1] F. Guo, Y. Li, M. S. Kankanhalli, and M. S. Brown, “An evaluation of wearable activity monitoring devices,” Proceedings of the 1st ACM international workshop on Personal data meets distributed multimedia, pp. 31-34, 2013.
[2] Fitbit. https://www.fitbit.com (accessed May 17, 2023)
[3] Xiaomi. https://www.mi.com (accessed May 17, 2023)
[4] Apple. https://www.apple.com (accessed May 17, 2023)
[5] J. Burns, A. Kassam, N. Sinha, L. Downie, L. Solnickova, B. Way, and J. Dahn, “Predicting and extending the lifetime of Li-ion batteries,” Journal of The Electrochemical Society, vol. 160, no. 9, pp. A1451, 2013.
[6] Y.-H. Wang, I.-Y. Chen, H. Chiueh, and S.-F. Liang, “A low-cost implementation of sample entropy in wearable embedded systems: An example of online analysis for sleep eeg,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-12, 2021.
[7] Z.-E Xu, “Accelerometer-based accurate step counting algorithm,” Master, Department of Mechanical Engineering, National Central University, Taoyuan, 2023. https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id=%22GC110323073%22.&searchmode=basic
[8] Y.-S. Liu, “Actigraphy platform for objective and long-term sleep assessment,” Master, Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, 2020. https://hdl.handle.net/11296/d76gme
[9] C.-X. Li, “Development and evaluation of a wake-sleep identification method for wearable embedded systems,” Master, Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, 2021. https://hdl.handle.net/11296/9237yt
[10] J. J. Shynk, “Adaptive IIR filtering,” IEEE Assp Magazine, vol. 6, no. 2, pp. 4-21, 1989.
[11] L. Rabiner, “On the use of autocorrelation analysis for pitch detection,” IEEE transactions on acoustics, speech, and signal processing, vol. 25, no. 1, pp. 24-33, 1977.
[12] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: Zero-effort crowdsourcing for indoor localization,” Proceedings of the 18th annual international conference on Mobile computing and networking, pp. 293-304, 2012.
[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: the art of scientific computing, Second Edition. Cambridge university press Cambridge, 1992.
[14] T.-H. Hsieh, M.-H. Liu, C.-E. Kuo, Y.-H. Wang, and S.-F. Liang, “Home-use and real-time sleep-staging system based on eye masks and mobile devices with a deep learning model,” Journal of medical and biological engineering, vol. 41, pp. 659-668, 2021.
指導教授 王淵弘(Yung-Hung Wang) 審核日期 2023-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明