博碩士論文 108383002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.149.214.144
姓名 江崇銘(Chong-Ming Jiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雷射積層製造麻田散鐵不銹鋼之異向機械性質與熱處理效應
(Anisotropic Mechanical Properties of Martensitic Stainless Steel Fabricated by Laser Additive Manufacturing and Heat Treatment Effects)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 選擇性雷射熔融(SLM)積層製造技術是透過雷射光束聚焦燒熔基板上金屬粉末,藉此將粉末逐層燒熔推疊直至工件完成。本研究目的為探討不同積層方向及後處理之回火效應對積層工件之顯微組織及各項機械性質之影響,選用之材料為AISI 420麻田散鐵系不銹鋼,包含研究拉伸性質、破裂韌性、疲勞裂縫成長等各項機械性質,並探討積層工件熱處理前後,殘留應力分布、顯微組織及異向性機械性質之間的關係。
在第一部分中,以SLM技術製作兩種不同積層方向之AISI 420拉伸試驗試片並進行拉伸試驗,分別是積層方向平行於試片施力方向的平行(PRL)試片以及垂直於試片施力方向的垂直(RERP)試片。接著試片區分三種熱處理狀態,分別是未經熱處理之初始狀態、200 °C及400 °C兩種回火溫度之後處理。兩組不同積層方向之殘留應力及硬度分佈有明顯的差異。PRL試片在各種狀態之降伏強度、抗拉強度與延伸率皆大於PERP試片。在初始狀態下拉伸破斷面呈現典型的脆性斷裂模式,另外回火狀態破斷面除了脆性劈裂的主要特徵,依回火條件不同呈現部分延性破裂的破斷面組合。SLM製作的兩種試片均具有沿積層方向生長的細長形柱狀結構,回火熱處理對於原先形成的細長形柱狀晶界並未有明顯改變,但對於晶界內的麻田散鐵影響較大,也因此在熱處理後異向拉伸性質仍然沒有消失,而且降伏強度的異向性隨回火溫度提高而提升,但延伸率卻有著相反的趨勢。
在第二部分中,所進行破裂韌性試驗之不同積層方向試片製作條件,與第一部分研究設定相同。PRL試片之破裂韌性在初始狀態及回火條件下皆大於PERP試片。在400 °C回火條件下兩種積層工件之破裂韌性值均優於初始狀態及200 °C回火條件,主要歸因於粗大化回火麻田散鐵體之熱處理效應。由於積層方向之影響,細長形柱狀結構仍然是影響異向破裂性質的主因,因此,回火效應雖明顯提升破裂韌性,但幾乎沒有對破裂韌性的異向性造成影響。
在第三部分中,針對不同積層方向製作的試片進行疲勞裂縫成長(FCG)試驗,試片包含未經熱處理之初始狀態及400 °C回火熱處理兩種狀態。實驗結果顯示,與PERP試片相比,PRL試片在初始狀態及回火狀態下均呈現較佳的 FCG 阻抗,有較低的疲勞裂縫成長速率。此外,回火效應能明顯減少疲勞裂縫成長的異向性行為,不過也會導致疲勞裂縫成長應力強度因子門檻範圍值降低。關於破裂韌性及疲勞裂縫成長所觀察到的異向性行為,主要歸因於裂縫成長路徑與細長形柱狀結構之間的相互作用所致。
摘要(英) The aim of this study was to investigate the relationship between build orientation, heat treatment, microstructure, and mechanical properties of AISI 420 martensitic stainless steel fabricated by selective laser melting (SLM). In Part I, tensile specimens were directly built by SLM in the directions perpendicular and parallel to the loading direction of the tensile test. Heat treatments at 200 °C and 400 °C were conducted to study the tempering effect. The difference in the residual stress and hardness distribution between the two build directions was noticeable. The parallel group exhibited better strength and ductility than the perpendicular group in both as-built and tempered states. Typical brittle fracture pattern was visible in the as-built state while a combination of primarily brittle and secondarily ductile fracture features was seen in the tempered conditions. Both as-built and tempered SLM builds exhibited elongated cellular structures growing along the build direction. The directional microstructure was responsible for the anisotropic tensile properties. The anisotropy of tensile strength of SLM AISI 420 build could be reduced to a certain extent by the given tempering treatments, while the elongation exhibited an opposite trend.
In Part II, the anisotropic fracture toughness of SLM AISI 420 built in two orientations was investigated. Post-process heat treatments were performed at 200 °C and 400 °C to study the tempering effect. The parallel group exhibited better fracture toughness than the perpendicular group in both as-built and tempered states. KIC value of the 400 °C tempered state was superior to that of other states due to a tempered martensite phase. Elongated cellular structure was responsible for the anisotropic behavior because of a build direction effect, while the anisotropy was barely changed by the tempering treatments.
In Part III, the anisotropic fatigue crack growth (FCG) behavior of SLM AISI 420 builds in two different build directions was investigated, in consideration of the effect of tempering treatment at 400 °C. The parallel group, in both as-built and tempered states, had a lower fatigue crack growth rate (FCGR) than the perpendicular group. The given heat treatment reduced the anisotropy of FCG behavior to a less extent, as the difference in FCGR between the two orientations was decreased in the tempered state, compared to the as-built state. The anisotropic FCG behavior was attributed to the interaction between the crack path and the elongated cellular structure. Moreover, it was found that tempered martensite had a greater influence on the perpendicular group than on the parallel group.
關鍵字(中) ★ 異向性機械性質
★ 破裂韌性
★ 疲勞裂縫成長
★ 選擇性雷射熔融
★ 回火熱處理
★ 細長形柱狀結構
關鍵字(英) ★ anisotropic mechanical properties
★ fracture toughness
★ fatigue crack growth
★ selective laser melting
★ tempering treatment
★ elongated cellular structure
論文目次 ABSTRACT I
TABLE OF CONTENTS VI
LIST OF TABLES VIII
LIST OF FIGURES IX
LIST OF ABBREVIATIONS XII
NOMENCLATURE XIII
1. INTRODUCTION 1
1.1 Background 1
1.2 Literature Review 3
1.3 Purpose and Scope 8
2. EXPERIMENTAL PROCEDURES 10
2.1 Material and Specimen Fabrication 10
2.2 Post-process Heat Treatment 16
2.3 Tensile Test 16
2.4 Fracture Toughness Test 17
2.5 Fatigue Crack Growth Test 17
2.6 Measurement of Density and Hardness 18
2.7 Measurement of Residual Stress 18
2.8 Measurement of Retained Austenite 19
2.9 Fractography and Microstructural Analysis 21
3. RESULTS AND DISCUSSION 22
3.1 Anisotropic Tensile Properties 22
3.1.1 Density and hardness 22
3.1.2 Residual stress 25
3.1.3 Tensile properties 28
3.1.4 Fractography analysis 30
3.1.5 Microstructural analysis 34
3.1.6 Crystalline phase analysis 41
3.1.7 Anisotropy of tensile properties and tempering effect 45
3.2 Anisotropic Fracture Toughness 48
3.2.1 Microstructural analysis 48
3.2.2 Crystalline phase analysis 50
3.2.3 Fracture toughness results 52
3.2.4 Anisotropy of fracture toughness and tempering effect 54
3.2.5 Fractography analysis 58
3.3 Anisotropic Fatigue Crack Growth Behavior 63
3.3.1 Fatigue crack growth rate data 63
3.3.2 Anisotropy of fatigue crack growth and tempering effect 67
3.3.3 Fatigue fractography analysis 72
4. CONCLUSIONS 78
REFERENCES 81
參考文獻 1. C. Achillas, D. Tzetzis, and M.O. Raimondo, “Alternative Production Strategies Based on the Comparison of Additive and Traditional Manufacturing Technologies,” International Journal of Production Research, Vol. 55, pp. 3497-3509, 2017.
2. T. Pereira, J. V. Kennedy, and J. Potgieter, “A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the Job,” Procedia Manufacturing, Vol. 30, pp. 11-18, 2019.
3. M. Al-Makky and D. Mahmoud, “The Importance of Additive Manufacturing Processes in Industrial Applications,” The International Conference on Applied Mechanics and Mechanical Engineering, Vol. 17, pp. 1-14, 2016.
4. M. Kalender, Y. Bozkurt, S. Ersoy, and S. Salman, “Product Development with Additive Manufacturing and 3D Printer Technology in Aerospace Industry,” Journal of Aeronautics and Space Technologies, Vol. 13, pp. 129-138, 2020.
5. S. M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, “An Overview of Direct Laser Deposition for Additive Manufacturing, Part I: Transport Phenomena, Modeling and Diagnostics,” Additive Manufacturing, Vol. 8, pp. 36-62, 2015.
6. T. H. Becker, P. Kumar, and U. Ramamurty, “Fracture and Fatigue in Additively Manufactured Metals,” Acta Materialia, Vol. 219, 117240, 2021.
7. Y. Kok, X. P. Tan, P. Wang, M. L. S. Nai, N. H. Loh, E. Liu, and S. B. Tor, “Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review,” Materials & Design, Vol. 139, pp. 565-586, 2018.
8. M. R. Khosravani, F. Berto, M. R. Ayatollahi, and T. Reinicke, “Fracture Behavior of Additively Manufactured Components: A Review,” Theoretical and Applied Fracture Mechanics, Vol. 109, 102763, 2020.
9. S. Afkhami, M. Dabiri, S. H. Alavi, T. Björk, and A. Salminen, “Fatigue Characteristics of Steels Manufactured by Selective Laser Melting,” International Journal of Fatigue, Vol. 122, pp. 72-83, 2019.
10. P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E. A. Jägle, “Steels in Additive Manufacturing: A Review of Their Microstructure and Properties,” Materials Science and Engineering: A, Vol. 772, 138633, 2020.
11. J. K. L. Lai, C. H. Shek, and K. H. Lo, Stainless Steels: An Introduction and Their Recent Developments, Bentham Science, Beijing, China, 2015.
12. X. Zhao, Q. Wei, B. Song, Y. Liu, X. Luo, S. Wen, and Y. Shi, “Fabrication and Characterization of AISI 420 Stainless Steel Using Selective Laser Melting,” Materials and Manufacturing Processes, Vol. 30, pp. 1283-1289, 2015.
13. P. Mercelis and J. P. Kruth, “Residual Stresses in Selective Laser Sintering and Selective Laser Melting,” Rapid Prototyping, Vol. 12, pp. 254-265, 2006.
14. A. Sola and A. Nouri, “Microstructural Porosity in Additive Manufacturing: The Formation and Detection of Pores in Metal Parts Fabricated by Powder Bed Fusion,” Journal of Advanced Manufacturing and Processing, Vol. 1, e10021, 2019.
15. S. Liu, Y. C. Shin, “Additive Manufacturing of Ti6Al4V Alloy: A Review,” Materials & Design, Vol. 164, 107552, 2019.
16. B. Mooney and K. I. Kourousis, “A Review of Factors Affecting the Mechanical Properties of Maraging Steel 300 Fabricated via Laser Powder Bed Fusion,” Metals, Vol. 10, 1273, 2020.
17. A. Charmi, R. Falkenberg, L. Ávila, G. Mohr, K. Sommer, A. Ulbricht, M. Sprengel, R. Saliwan Neumann, B. Skrotzki, and A. Evans, “Mechanical Anisotropy of Additively Manufactured Stainless Steel 316L: An Experimental and Numerical Study,” Materials Science and Engineering: A, Vol. 799, 140154, 2021.
18. Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, and W. Huang, “Microstructure and Anisotropic Tensile Behavior of Laser Additive Manufactured TC21 Titanium Alloy,” Materials Science and Engineering: A, Vol. 673, pp. 204-212, 2016.
19. P. Hartunian and M. Eshraghi, “Effect of Build Orientation on the Microstructure and Mechanical Properties of Selective Laser-Melted Ti-6Al-4V Alloy,” Journal of Manufacturing and Materials Processing, Vol.2, pp. 69, 2018.
20. G. E. Bean, T. D. McLouth, D. B. Witkin, S. D. Sitzman, P. M. Adams, and R. J. Zaldivar, “Build Orientation Effects on Texture and Mechanical Properties of Selective Laser Melting Inconel 718,” Journal of Materials Engineering and Performance, Vol. 28, pp. 1942-1949, 2019.
21. L. Rickenbacher, T. Etter, S. Hovel, and K. Wegener, “High Temperature Material Properties of IN738LC Processed by Selective Laser Melting (SLM) Technology,” Rapid Prototyping Journal, Vol. 19, pp. 282, 2013.
22. J. Suryawanshi, K. G. Prashanth, and U. Ramamurty, “Mechanical Behavior of Selective Laser Melted 316L Stainless Steel,” Materials Science and Engineering: A, Vol. 696, pp. 113–121, 2017.
23. B. Mooney, K. Kourousis, and R. Raghavendra, “Plastic Anisotropy of Additively Manufactured Maraging Steel: Influence of the Build Orientation and Heat Treatments,” Additive Manufacturing, Vol. 25, pp. 19-31, 2019.
24. J. Suryawanshi, K. G. Prashanth, and U. Ramamurty, “Tensile, Fracture, and Fatigue Crack Growth Properties of a 3D Printed Maraging Steel through Selective Laser Melting,” Journal of Alloys and Compounds, Vol. 725, pp. 355-364, 2017.
25. C. Tan, K. Zhou, M. Kuang, W. Ma, and T. Kuang, “Microstructural Characterization and Properties of Selective Laser Melted Maraging Steel with Different Build Directions,” Science and Technology of Advanced Materials, Vol. 19, pp. 746-758, 2018.
26. J. Suryawanshi, K. G. Prashanth, S. Scudino, J. Eckert, O. Prakash, and U. Ramamurty, “Simultaneous Enhancements of Strength and Toughness in An Al-12Si Alloy Synthesized Using Selective Laser Melting,” Acta Materialia, Vol. 115, pp. 285-294, 2016.
27. J. T. O. de Menezes, E. M. Castrodeza, and R. Casati, “Effect of Build Orientation on Fracture and Tensile Behavior of A357 Al Alloy Processed by Selective Laser Melting,” Materials Science and Engineering: A, Vol. 766, 138392, 2019.
28. V. Cain, L. Thijs, J. Van Humbeeck, B. Van Hooreweder, and R. Knutsen, “Crack Propagation and Fracture Toughness of Ti6Al4V Alloy Produced by Selective Laser Melting,” Additive Manufacturing, Vol. 616, pp. 68-76, 2015.
29. L. Afroz, R. Das, M. Qian, M. Easton, and M. Brandt, “Fatigue Behaviour of Laser Powder Bed Fusion (L-PBF) Ti–6Al–4V, Al–Si–Mg and Stainless Steels: A Brief Overview,” International Journal of Fracture, Vol. 235, pp. 3-46, 2022.
30. T. Hermann Becker and D. Dimitrov, “The Achievable Mechanical Properties of SLM Produced Maraging Steel 300 Components,” Rapid Prototyping Journal, Vol. 22, pp. 487-494, 2016.
31. A. Yadollahi, M. Mahmoudi, A. Elwany, H. Doude, L. Bian, and J. C. Newman Jr, “Effects of Crack Orientation and Heat Treatment on Fatigue-Crack-Growth Behavior of AM 17-4 PH Stainless Steel,” Engineering Fracture Mechanics, Vol. 226, 106874, 2020.
32. P. D. Nezhadfar, E. Burford, K. Anderson-Wedge, B. Zhang, S. Shao, S. R. Daniewicz, and N. Shamsaei, “Fatigue Crack Growth Behavior of Additively Manufactured 17-4 PH Stainless Steel: Effects of Build Orientation and Microstructure,” International Journal of Fatigue, Vol. 123, pp. 168-179, 2019.
33. J. Kluczyński, L. Śnieżek, K. Grzelak, J. Torzewski, I. Szachogłuchowicz, M. Wachowski, and J. Łuszczek, “Crack Growth Behavior of Additively Manufactured 316L Steel—Influence of Build Orientation and Heat Treatment,” Materials, Vol. 13, 3259, 2020.
34. O. Fergani, A. Bratli Wold, F. Berto, V. Brotan, and M. Bambach, “Study of the Effect of Heat Treatment on Fatigue Crack Growth Behaviour of 316L Stainless Steel Produced by Selective Laser Melting,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 41, pp. 1102-1119, 2018.
35. P. Krakhmalev, I. Yadroitsava, G. Fredriksson, and I. Yadroitsev, “In Situ Heat Treatment in Selective Laser Melted Martensitic AISI 420 Stainless Steels,” Materials & Design, Vol. 87, pp. 380–385, 2015.
36. S. D. Nath, H. Irrinki, G. Gupta, L. Kvetkova, M. Kearns, O. Gulsoy, and S. Atre, “Microstructure-Property Relationships of 420 Stainless Steel Fabricated by Laser-Powder Bed Fusion,” Powder Technology, Vol. 343, pp. 738-746, 2019.
37. K. Saeidi, D. L. Zapata, F. Lofaj, L. Kvetkova, J. Olsen, Z. Shen, and F. Akhtar, “Ultra-High Strength Martensitic 420 Stainless Steel with High Ductility,” Additive Manufacturing, Vol. 29, 100803, 2019.
38. Y. Tian, K. Chadha, and C. Aranas, “Laser Powder Bed Fusion of Ultra-High-Strength 420 Stainless Steel: Microstructure Characterization, Texture Evolution and Mechanical Properties,” Materials Science and Engineering: A, Vol. 805, 140790, 2020.
39. S. D. Nath, A, Okello, R. Kelkar, G. Gupta, M. Kearns, and S. V. Atre, “Adapting L-PBF Process for Fine Powders: A Case Study in 420 Stainless Steel,” Materials and Manufacturing Processes, Vol. 37, pp. 1320-1331, 2022.
40. L.-C. Shen, X.-H. Yang, J.-R. Ho, P.-C. Tung, and C.-K. Lin, “Effects of Build Direction on the Mechanical Properties of a Martensitic Stainless Steel Fabricated by Selective Laser Melting,” Materials, Vol. 13, pp. 5142, 2020.
41. X.-H. Yang, C.-M. Jiang, J.-R. Ho, P.-C. Tung, and C.-K. Lin, “Effects of Laser Spot Size on the Mechanical Properties of AISI 420 Stainless Steel Fabricated by Selective Laser Melting,” Materials, Vol. 14, 4593, 2021.
42. H. Zhu, Y. Li, B. Li, Z. Zhang, and C. Qiu, “Effects of Low-Temperature Tempering on Microstructure and Properties of the Laser-Cladded AISI 420 Martensitic Stainless Steel Coating,” Coatings, Vol. 8, pp. 451, 2018.
43. M. K. Alam, M. Mehdi, R. J. Urbanic, and A. Edrisy, “Electron Backscatter Diffraction (EBSD) Analysis of Laser-Cladded AISI 420 Martensitic Stainless Steel,” Materials Characterization, Vol. 161, 110138, 2020.
44. “Standard Test Method for Tension Testing of Metallic Materials,” ASTM Standard E8/E8M-21, ASTM International, West Conshohocken, PA, USA, 2021.
45. “Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials,” ASTM Standard E399-19, ASTM International, West Conshohocken, PA, USA, 2019.
46. “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM Standard E647, ASTM International, West Conshohocken, PA, USA, 2016.
47. N. H. van Dijk, A. M. Butt, L. Zhau, J. Sietsma, S. E. Offerman, J. P. Wright, and S. van der Zwaag, “Thermal Stability of Retained Austenite in TRIP Steels Studied by Synchrotron X-ray Diffraction During Cooling,” Acta Materialia, Vol. 53, pp. 5439-5447, 2005.
48. A. Li, V. Ji, J. L. Lebrun, and G. Ingelbert, “Surface Roughness Effects on Stress Determination by the X-ray Diffraction Method,” Experimental Techniques, Vol. 19, pp. 9-11, 1995.
49. N. Saini, C. Pandey, M. M. Mahapatra, and H. K. Narang, “A Comparative Study of Ductile-Brittle Transition Behavior and Fractography of P91 and P92 Steel,” Engineering Failure Analysis, Vol. 81, pp. 245-253, 2017.
50. Y. Zhang, D. Zhan, X. Qi, and Z. Jiang, “Austenite and Precipitation in Secondary-Hardening Ultra-High-Strength Stainless Steel,” Materials Characterization, Vol. 144, pp. 393–399, 2018.
51. S.-Y. Lu, K.-F. Yao, Y.-B. Chen, M.-H. Wang, X.-Liu, and X.-Y. Ge, “The Effect of Tempering Temperature on the Microstructure and Electrochemical Properties of a 13 wt.% Cr-type Martensitic Stainless Steel,” Electrochimica Acta, Vol. 165, pp. 45–55, 2015.
52. A. Boudiaf, L. Taleb, and M. A. Belouchrani, “Experimental Analysis of the Correlation between Martensitic Transformation Plasticity and the Austenitic Grain Size in Steels,” European Journal of Mechanics-A/Solids, Vol. 30, pp. 326-335, 2011.
53. L. Yuan, D. Ponge, J. Wittig, P. Choi, J. A. Jiménez, and D. Raabe, “Nanoscale Austenite Reversion Through Partitioning, Segregation and Kinetic Freezing: Example of a Ductile 2 GPa Fe–Cr–C Steel,” Acta Materialia, Vol. 60, pp. 2790-2804, 2012.
54. G. B. Olson and M. Azrin, “Transformation Behavior of TRIP Steels,” Metallurgical Transactions A, Vol. 9, pp. 713-721, 1978.
55. J. Speer, D. K. Matlock, B. C. De Cooman, and J. G. Schroth, “Carbon Partitioning into Austenite after Martensite Transformation,” Acta Materialia, Vol. 51, pp. 2611–2622, 2003.
56. G. Prieto W. R. Tuckart, and J. E. Perez Ipiña, “Influence of a Cryogenic Treatment on the Fracture Toughness of An AISI 420 Martensitic Stainless Steel,” Materials and Technologies, Vol. 51, pp. 591-596, 2017.
57. Y. Liang, S. Long, P. Xu, Y. Lu, Y. Jiang, Y. Liang, and M. Yang, “The Important Role of Martensite Laths to Fracture Toughness for the Ductile Fracture Controlled by the Strain in EA4T Axle Steel,” Materials Science and Engineering: A, Vol. 695, pp. 154-164, 2017.
58. M. Mokhtarishirazabad, C. Simpson, S. Kabra, G. Horne, I. Palmer I, A. Moffat, C. Truman, D. Knowles, and M. Mostafavi, “Evaluation of Fracture Toughness and Residual Stress in AISI 316L Electron Beam Welds,” Fatigue & Fracture of Engineering Materials & Structures, Vol. 44, pp. 2015-2032, 2021.
59. X. B. Ren, Z. L. Zhang, and B. Nyhus, “Effect of Residual Stresses on Ductile Crack Growth Resistance,” Engineering Fracture Mechanics, Vol. 77, pp. 1325-1337, 2010.
60. H. Nakagawa and T. Miyazaki, “Effect of Retained Austenite on the Microstructure and Mechanical Properties of Martensitic Precipitation Hardening Stainless Steel,” Journal of materials science, Vol. 34, pp. 3901–3908, 1999.
61. M. J. Paul, Y. Muniandy, J. J. Kruzic, U. Ramamurty, and B. Gludovatz, “Effect of Heat Treatment on the Strength and Fracture Resistance of a Laser Powder Bed Fusion-Processed 18Ni-300 Maraging Steel,” Materials Science and Engineering: A, Vol. 844, 143167, 2022.
62. J. Yamabe and M. Kobayashi, “Effect of Hardness and Stress Ratio on Threshold Stress Intensity Factor Ranges for Small Cracks and Long Cracks in Spheroidal Cast Irons,” Journal of Solid Mechanics and Materials Engineering, Vol. 1, pp. 667-678, 2007.
63. Q. Sun, K. Li, X. Li, S. S. Rui, Z. Cai, and J. Pan, “Near-Threshold Fatigue Crack Growth Behavior of 10% Cr Martensitic Steel Welded Joint with 9% Cr Weld Metal in High Temperature Air,” International Journal of Fatigue, Vol. 137, 105650, 2020.
64. A. Riemer, S. Leuders, M. Thöne, H. A. Richard, T. Tröster, and T. Niendorf, “On the Fatigue Crack Growth Behavior in 316L Stainless Steel Manufactured by Selective Laser Melting,” Engineering Fracture Mechanics, Vol. 120, pp. 15-25, 2014.
65. J. R. Poulin, V. Brailovski, and P. Terriault, “Long Fatigue Crack Propagation Behavior of Inconel 625 Processed by Laser Powder Bed Fusion: Influence of Build Orientation and Post-processing Conditions,” International Journal of Fatigue, Vol. 116, pp. 634-647, 2018.
66. N. E. Dowling, S. L. Kampe, and M. V. Kral, “Fatigue Crack Growth,” Chapter 11 in Mechanical Behavior of Materials-Engineering Methods for Deformation, Fracture, and Fatigue, Fifth Edition, Pearson, Harlow, United Kingdom, 2019.
67. M. Petersmann, T. Antretter, G. Cailletaud, A. Sannikov, U. Ehlenbröker, and F. D. Fischer, “Unification of the Non-Linear Geometric Transformation Theory of Martensite and Crystal Plasticity - Application to Dislocated Lath Martensite in Steels,” International journal of plasticity, Vol. 119, pp. 140-155, 2019.
68. S. Ueki, Y. Mine, and K. Takashima, “Microstructure-Sensitive Fatigue Crack Growth in Lath Martensite of Low Carbon Steel,” Materials Science and Engineering: A, Vol. 773, 138830, 2020.
69. K. Okada, A. Shibata, Y. Takeda, and N. Tsuji, “Crystallographic Analysis of Fatigue Fracture Initiation in 8Ni-0.1C Martensitic Steel,” International Journal of Fatigue, Vol. 143, 105921, 2021.
70. X. Gong, P. Marmy, L. Qin, B. Verlinden, M. Wevers, and M. Seefeldt, “Effect of Liquid Metal Embrittlement on Low Cycle Fatigue Properties and Fatigue Crack Propagation Behavior of a Modified 9Cr–1Mo Ferritic–Martensitic Steel in an Oxygen-Controlled Lead–bismuth Eutectic Environment at 350 °C,” Materials Science and Engineering: A, Vol. 618, pp. 406-415, 2014.
71. S. Li, G. Zhu, and Y. Kang, “Effect of Substructure on Mechanical Properties and Fracture Behavior of Lath Martensite in 0.1C–1.1Si–1.7Mn steel,” Journal of Alloys and Compounds, Vol. 675, pp. 104-115, 2016.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2023-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明