博碩士論文 104383003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.188.22.14
姓名 徐昌鴻(HSU, CHANG HUNG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 影響變壓器噪音與振動之因素研究
(Research on Factors Affecting Noise and Vibration of Transformers)
相關論文
★ 四弦型非對稱光學讀取頭致動器模態共振分析與抑制★ 網路連接儲存裝置熱分析與設計
★ 小型垂直軸風力發電機之有限元素分析★ 平板受聲源作用之振動與輻射聲場分析
★ 壓電吸振器應用於平板的振動與噪音控制★ 主動式吸振器應用於薄板減振與減噪
★ 離散振動系統之分析軟體製作★ 有洞薄方板之動態分析與激振後之聲場
★ 撓性結構之主動振動控制★ 速度與位移回饋式壓電吸振器之減振研究
★ 以LabVIEW為介面之模態測試軟體製作★ 電壓回饋壓電吸振器對平板之振動控制
★ 可調式消音閥的分析與最佳設計★ 旋轉樑的動態分析與壓電吸振器之減振設計
★ 自感式壓電吸振器之設計與應用於矩形板之減振★ 多孔薄方板之振動與聲場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 電力系統上最為重要的機電裝置為變壓器(Transformer),其產生的低鳴噪音聲讓人們難以忍受,本論文旨在研究影響變壓器噪音(Noise)及振動(Vibration)的因素,以期在設計上提出影響噪音因素方案。變壓器噪音與振動根源基本上來自於軟磁性材料,但是對於磁性與噪音間的真實關係鮮少有研究作探討,故本論文針對軟磁性材料磁致伸縮(Magnetostriction, λ)大小與磁滯迴線(Hysteresis loop)矩形比SR (Squareness ratio, B_r/B_s)、鐵心容積大小、以及高頻率鐵心腳不同型態磁通密度分佈特徵研究其對噪音與振動的影響。文中首先藉由磁致伸縮儀量測磁致伸縮特性,取得材料受到磁化後材料長度尺寸伸縮變化;再者,以振動樣本分析儀量測磁滯迴線參數包含飽和磁通密度(Saturation magnetic flux density, B_s)、矯頑磁力(Coercive force, H_c)與剩磁(Demagnetization remanence, B_r)及矩形比等參數,確認所使用材料的磁性參數,以進一步研究探討影響變壓器噪音與振動因素關係。本論文之實驗中設計多種類不同軟磁性鐵心變壓器研究實驗個案,包含不同軟磁性材料矽鋼片(Silicon steel)與非晶質合金(Amorphous alloy)等製成鐵心、討論不同變壓器容量(介於1kVA至60MVA)、不同鐵心重量、不同線圈重量等電力型變壓器進行噪音與振動研究。最後對於工業界經常應用的中頻變壓器(Medium frequency transformer, MFT)提出設計模擬與製造討論,以非晶質鐵心與複合式鐵心(SA1、HB1及HB1-M)探討電子變壓器噪音與振動影響。本研究貢獻著重於提出超大型電力變壓器雖以磁致伸縮與鐵心體積大小為主要影響變壓器噪音的因素;對於極小型電子式非晶質鐵心變壓器顯示鐵心型態包含鐵心腳、鐵心長度以及鐵心彎曲轉角等結構對噪音亦有所影響,將進行討論與分析。
摘要(英) The most important electromechanical device in a power system is a transformer. However, the low-pitched noise it produces is unbearable to people. This paper aims to study the factors affecting the noise and vibration of the transformer to propose a scheme for mitigating the noise in the design of the transformer. The soft magnetic materials are the source of transformer noise. However, studies on the relationship between magnetism and noise are limited. Therefore, this paper focuses on the magnitude of magnetostriction (λ) and hysteresis loop of soft magnetic materials. Hysteresis loop (or B-H curve), squareness ratio, core volume size, and high-frequency core leg different types of magnetic flux density distribution characteristics to study their impact on noise and vibration. In this paper, the magnetostrictive characteristics of the core are measured by a magnetostrictive instrument, and the change in dimensions of the material after magnetization are obtained. The hysteresis loop parameters such as saturation magnetic flux density (Bs), coercive force (Hc), demagnetization remanence (Br), and squareness ratio (Br/Bs) are measured via a vibrating sample analyzer to confirm the magnetic parameters of the materials used. Furthermore, this study explores the relationship between the factors affecting the noise and vibration of the transformer. In the experiment, a variety of different soft magnetic core transformers are designed, including cores fabricated of different soft magnetic materials such as silicon steel sheets and amorphous alloys. Different transformer capacities (between 1kVA and 60MVA), core weights, and the effects on noise and vibration in power transformers with different coil weights have been analyzed. Lastly, the design simulation and manufacturing discussion of intermediate frequency electronic transformers often used in the industry have been proposed, and the impact of noise and vibration on electronic transformers with amorphous cores and composite cores (SA1, HB1, and HB1-M) has been discussed. This research concludes that hysteresis expansion and core volume are the primary factors affecting transformer noise in ultra-large power transformers; for extremely small electronic amorphous core transformers, the core parameters including legs, length, and bending structures such as corners and core lengths also have an impact on noise, which has been discussed and analyzed simultaneously.
關鍵字(中) ★ 變壓器
★ 振動
★ 噪音
★ 磁致伸縮
★ 磁滯迴線
★ 矩形比
關鍵字(英) ★ Transformer
★ vibration
★ noise
★ magnetostriction
★ hysteresis loop
★ squareness ratio
論文目次 中文摘要 i
英文摘要 ii
目錄 iii
表目錄 v
圖目錄 vi
第1章 緒論 1
1.1前言 1
1.2研究背景 1
1.3文獻回顧 2
1.3.1鐵心與線圈結構 3
1.3.2磁致伸縮 6
1.3.3磁致迴線 9
1.3.4變壓器噪音設計考量 10
1.4研究動機與目的 17
1.5研究方法與步驟 18
第2章 磁性材料特性與量測 20
2.1矽鋼片材料磁特性的量測方法 20
2.1.1材料磁性量測設備介紹 20
A. 磁滯迴線量測原理 20
B. 磁致伸縮量測原理 21
2.2矽鋼片材料特性量測結果. 21
2.2.1矽鋼片磁滯迴線B-H 21
2.2.2矽鋼片磁致伸縮 24
2.3非晶質合金磁特性量測 24
2.3.1非晶質磁滯迴線B-H 24
2.3.2非晶質磁致伸縮 26
第3章 變壓器不同磁性鐵心規格噪音特性之量測與討論 27
3.1變壓器噪音之經驗公式 27
3.2變壓器磁性噪音量測方法 29
3.2.1單一鐵心施加締緊力噪音量測方法 29
3.2.2組裝後成品變壓器噪音量測方法 32
3.3變壓器與鐵心磁性噪音實驗結果與討論 34
3.3.1實驗1:鐵心施加締緊力之噪音實驗 34
3.3.2實驗2:矽鋼片與非晶質鐵心變壓器噪音實驗 37
3.3.3實驗3:不同鐵心與線圈尺寸規格設計之噪音實驗 39
3.3.4實驗4:不同鐵心重量之噪音實驗 40
3.3.5實驗5:不同矽鋼片材料(27ZH100/30ZH105)對噪音影響 42
第4章 中頻薄型非晶質合金鐵心振動與噪音研究 43
4.1中頻變壓器於電路配置功能 43
4.2中頻MFT鐵心結構與模擬 44
4.2.1鐵心結構建模 45
4.2.2模擬結果與討論 46
4.3噪音與振動實驗平台 50
4.4薄型非晶質鐵心噪音與振動實驗結果與討論 51
4.5複合式鐵心設計、製造與實驗 54
第5章 結論 58
5.1結論 58
5.2未來展望 58
參考文獻 59 
表 目 錄
頁次
表2-1 磁特性樣本(27PH100、27ZH100與30ZH105)量測數據 23
表2-2 磁特性樣本(非晶質SA1、HB1與HB1-M)量測數值 26
表3-1 量測鐵心噪音計與振動計規格 31
表3-2 矽鋼片鐵心於相同材料與容量設計下噪音結果比較表 40
表3-3 矽鋼片鐵心於相同材料下,不同大小容量之噪音比較表 41
表3-4 矽鋼片鐵心相同重量下,相依於不同材料及不同容量噪音比較表 42
表4-1電氣參數設定:包含輸入電壓源、頻率、匝數與電阻等 46
表4-2軟磁性鐵心參數設定:包含導電率、相對介電常數、磁通密度等 46
表4-3鐵心於空氣介質參數設定:包含導磁係數、導電率、熱膨脹係數等 46
表4-4 非晶質SA1鐵心腳通密度分佈統計 49

圖 目 錄
頁次
圖1-1台灣電力系統於電力變壓器配置示意圖 2
圖1-2位於美國西雅圖電力變壓器安裝鄰近城市之案例 2
圖1-3變壓器結構示意圖:(a)單相內鐵型(鐵心在內部)、(b)單相外鐵心(鐵心在外部)、(c)三相內鐵型、(d)三相外鐵型 4
圖1-4變壓器鐵心實體圖:(a)單相外鐵型、(b)單相內鐵型、(c)三相外鐵型(五腳)
、(d)三相內鐵型(三腳) 4
圖1-5變壓器鐵心搭接結構:(a)鐵心組裝完整型態、(b)鐵心L型搭接結構示意
、(c)鐵心T型搭接結構示意、(d)鐵心階梯疊積示意、(e) 階梯疊積實體圖
5
圖1-6相同同等級矽鋼片材料由不同廠家生產與退火製程其磁致伸縮特性 7
圖1-7鐵磁性材料特性曲線:(a) 磁致伸縮曲線、(b) 磁滯迴線 8
圖1-8鐵磁性材料經無磁場退火、橫磁退火和縱磁退火後的磁致伸縮曲線:
(a)材料滾軋與退火方向、(b)三種不同退火方法磁致伸縮 9
圖1-9噪音設計與磁性關係示意圖:(a)磁通密度對應不同鐵心材料、
(b)噪音與變壓器成本比例(%) 10
圖1-10 鐵心尺寸與噪音關係:(a)鐵心尺寸規格、(b)疊積鐵心直徑與噪音關係 11
圖1-11 變壓器外殼底部防振材料:(a)不同襯墊材質實驗結果、
(b)襯墊材質避免共振倍頻材料試驗、(c)噪音量測結果 12
圖1-12 鐵心搭接結構與噪音關係:(a)捲鐵心搭接結構、(b)柱狀式鐵心搭接結構、
(c)傳統CSL與多階NSL結構鐵心與變壓器之噪音量測結果 13
圖1-13變壓器中的噪聲產生和振動傳遞:(a)變壓器產生噪音路徑、
(b)鐵心與搭接結構、(c)噪音映射至鐵殼外路徑示意圖 14
圖1-14 大型變壓器特性量測與環境 15
圖1-15 變壓器中的噪聲產生和振動傳遞:(a)變壓器產生噪音路徑、(b)變壓器噪音由內至外幅射路徑示意圖 17
圖1-16 特高壓345kV大型變壓器特性量測與環境 17
圖2-1 軟磁性矽鋼片鐵心磁特性量測,包含磁滯迴線B-H與磁致伸縮λ(ppm):
(a)-(b)為27PH100、(c)-(d)為27ZH100、(e)-(f)為30ZH105與(g)-(h)為23ZDMH90
23
圖2-2 量測軟磁性材料磁特性B-H與λ_s:(a)-(b)為非晶質合金SA1、(c)-(d)為非晶質合金HB1、(e)-(f)為非晶質合金HB1-M 25
圖3-1 變壓器450kVA半成品鐵心的締緊壓力實驗:(a)裸鐵心實驗電路圖、(b)締緊節點共十處位置、(c)測試鐵心實體 30
圖3-2 疊積後的鐵心以夾具進行締緊關係示意圖 31
圖3-3 變壓器測試電路圖 32
圖3-4 變壓器測試:(a)噪音量測節點、(b)測試實體環境 33
圖3-5 噪音實驗-鐵心450kVA容量變壓器實驗結果:(a)60Hz、(b)50Hz 35
圖3-6 鐵心450kVA容量變壓器實驗結果:(a)60Hz、(b)50Hz 37
圖3-7 三相配電變壓器容量1MVA製造與組裝:(a)非晶質鐵心、(b)線圈、(c)半成品AT組裝變壓器、(d)完成品變壓器 38
圖3-8 不同鐵心變壓器噪音量測結果 39
圖4-1 中頻變壓器於轉換器間關係 43
圖4-2 中頻變壓器鐵心設計:(a)鐵心不同類型、(b)鐵心磁力線路徑示意 45
圖4-3 非晶質合金SA1三角形鐵心FEA模擬結果:(a)60Hz、(b)3,000Hz 47
圖4-4 非晶質合金SA1正方形鐵心FEA模擬結果:(a)60Hz、(b)3,000Hz 48
圖4-5 非晶質合金SA1長方形鐵心FEA模擬結果:(a)60Hz、(b)3,000Hz 48
圖4-6 非晶質合金SA1圓形鐵心FEA模擬結果:(a)60Hz、(b)3,000Hz 48
圖4-7 非晶質合金SA1橢圓形鐵心FEA模擬結果:(a)60Hz、(b)3,000Hz 49
圖4-8 非晶質SA1鐵心於中頻率運轉實驗架構圖 51
圖4-9 不同形態非晶質SA1鐵心噪音60-3kHz特性 52
圖4-10 不同形態非晶質SA1鐵心振動特性:(a) 60Hz下振動FFT轉換、(b)3kHz下振動FFT轉換 54
圖4-11 複合式非晶質鐵心噪音特性:編號項次1至5種類形鐵心層疊結構 55
圖4-12 複合式非晶質鐵心於不同鐵心結構量測噪音60Hz至3kHz結果 55
圖4-13 複合式非晶質鐵心於不同結構形態振動FFT倍頻特性:(a)低頻噪音60Hz、(b) 高頻噪音3kHz振動 57
參考文獻 [1]. S. G. Ramsis, S. Mats Bernesjö, S. Thomas, J. Anger, D. Chu, and H. R. Moore, “Development of ultra-low-noise transformer technology,” IEEE Transactions on Power Delivery, vol. 54, no. 5, pp: 228-234, 2018.
[2]. H. Jingzhu, L. Dichen, L. Qingfen, Y. Yang, and L. Shanshan, “Electromagnetic vibration noise analysis of transformer windings and core,” IET Electric Power Applications, vol. 10, no. 4, pp. 251–257, 2016.
[3]. R. Girgis and M. Bernesjö, “Contributions to differences between on-site and factory-measured noise levels of power transformers,” IEEE Transactions on Power Delivery, vol. 10, no. 1, pp. 82–88, 2014.
[4]. L. Zhu, Q. Yang, R. Yan, X. Zhang, and Y. Yang, “Research on dynamic vibration of transformer with wireless power transfer system load,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 2505404-1-4, 2015.
[5]. C. G. Yan, Y. Z. Wei, C. Xu, and B. H. Zhang, “Experimental verification and electromagnetic–mechanics–acoustic field coupling analysis of transformer pressure relief valve malfunctions due to external short-circuit faults,” IEEE Transactions on Magnetics, vol. 55, no. 6, pp. 8102904-1-4, 2019.
[6]. B. Garcia, J. C. Burgos and A.M. Alonso, “Transformer tank vibration modeling as a method of detecting winding deformations-part I: theoretical foundation,” IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 157-163, 2006.
[7]. B. Garcia, J. C. Burgos and A.M. Alonso, “Transformer tank vibration modeling as a method of detecting winding deformations-part II: experimental verification,” IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 164-169, 2006.
[8]. E. Doğan and B. Kekezoglu, “Power transformer noise, noise tests, and example test results,” International Journal of Electrical Communication Engineering, vol. 10, no. 1, pp. 57–61, 2016.
[9]. M. Javorski, J. Slavic, and M. Boltezar, “Frequency characteristics of magnetostriction in electrical steel related to the structural vibrations,” IEEE Transactions on Magnetics, vol. 48, no. 12, pp. 4727–4734, 2012.
[10]. R. Yan, X. Gao, L. H. Zhu, Q. X. Yang, T. Ben, Y. Li, and W. Yang, “Research on three-dimensional stress distribution of reactor core,” IEEE Transactions on Applied Superconductivity, vol. 26, no. 4, pp. 1–4, 2016.
[11]. K. Bouayed, L. Mebarek, V. Lanfranchi, J.-D. Chazot, R. Marechal, and M.-A. Hamdi, “Noise and vibration of a power transformer under an electrical excitation,” Applied Acoustics, vol. 128, pp. 64–70, 2017.
[12]. S. Ji, L. Zhu, and Y. Li, “Study on transformer tank vibration characteristics in the field and its application,” Przeglad Elektrotechniczny, vol. 87, no. 2, pp. 205–211, 2011.
[13]. H. Zhou, K. Hong, H. Huang, and J. Zhou, “Transformer winding fault detection by vibration analysis methods,” Applied Acoustics, vol. 114, pp. 136–146, 2016.
[14]. J. Zheng, J. Pan, and H. Huang, “An experimental study of winding vibration of a single-phase power transformer using a laser Doppler vibrometer,” Applied Acoustics, vol. 87, pp. 30–37, 2015.
[15]. Y. Wang and J. Pan, “Comparison of mechanically and electrically excited vibration frequency responses of a small distribution transformer,” IEEE Transactions on Power Delivery, vol. 32, no. 3, pp. 1173–1180, 2017.
[16]. M. Jin and J. Pan, “Vibration characteristics of a disk-type winding simulated by coupled concentric rings,” Applied Acoustics, vol. 101, pp. 104–114, 2016.
[17]. K. Hong, H. Huang, and J. Zhou, “Winding condition assessment of power transformers based on vibration correlation,” IEEE Transactions on Power Delivery, vol. 30, no. 4, pp. 1735–1742, 2015.
[18]. K. Hong, H. Huang, J. Zhou, Y. Shen, and Y. Li, “A method of realtime fault diagnosis for power transformers based on vibration analysis,” Measurement Science and Technology, vol. 26, no. 11, pp. 115011- 115016, 2015.
[19]. K. Hong, H. Huang, Y. Fu, and J. Zhou, “A vibration measurement system for health monitoring of power transformers,” Measurement, vol. 93, pp. 135–147, 2016.
[20]. M. Liu, O. Hubert, X. Mininger, F. Bouillault, L. Bernard, and T. Waeckerlé, “Reduction of power transformer core noise generation due to magnetostriction-induced deformations using fully coupled finiteelement modeling optimization procedures,” IEEE Transactions on Magnetics, vol. 53, no. 8, pp. 8400511-1-11, 2017.
[21]. A. J. Moses, P. I. Anderson, and T. Phophongviwat, “Localized surface vibration and acoustic noise emitted from laboratory-scale transformer cores assembled from grain-oriented electrical steel,” IEEE Transactions on Magnetics, vol. 52, no. 10, pp. 7100615-1-15, 2016.
[22]. S. Takajo, T. Ito, S. Okabe, and T. Omura, “Loss and noise analysis of transformer comprisinggrooved grain-oriented silicon steel,” IEEE Transactions on Magnetics, vol. 53, no. 9, pp. 2001606-1-6, 2017.
[23]. E. Reiplinger, "Assessment of grain-oriented transformer sheets with respect to transformer noise," Journal of Magnetism and Magnetic Materials, vol. 21, pp. 257-261, 1980.
[24]. T. Tanzer, H. Pregartner, M. Riedenbauer, R. Labinsky, M. Witlatschil, A. Muetze, K. Krischan, “Magnetostriction of electrical steel and its relation to the no-load noise of power transformers,” IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 4306-4314, 2018.
[25]. N. Ekreem, A. Olabi, T. Prescott, A. Rafferty, and M. Hashmi, “An overview of magnetostriction, its use and methods to measure these properties,” Journal of Materials Processing Technology, vol. 191, no. 13, pp. 96–101, 2007.
[26]. P. Klimczyk, P. Anderson, “A. Moses, andM. Davies, “Influence of cutting techniques on magnetostriction under stress of grain oriented electrical steel,” IEEE Transactions on Magnetics, vol. 48, no. 4, pp. 1417–1420, 2012.
[27]. Y. Gao, K. Muramatsu, K. Fujiwara, Y. Ishihara, S. Fukuchi, and T. Takahata, “Vibration analysis of a reactor driven by an inverter power supply considering electromagnetism and magnetostriction,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4789–4792, 2009.
[28]. Y. Kai, Y. Tsuchida, T. Todaka, and M. Enokizono, “Influence of biaxial stress on vector magnetic properties and 2-D magnetostriction of a nonoriented electrical steel sheet under alternating magnetic flux conditions,” IEEE Transactions on Magnetics, vol. 50, no. 4, 2014.
[29]. B. Bai, X. Zhao, D. Chen, J. Wang, and B. Li, “Simulation and experiment research on transformer excitation current under DC magnetic bias based on J-A model,” Transactions of China Electrotechnical Society, vol. 28, no. S2, pp. 162–166, 2013.
[30]. Z. Zhao, F. Liu, S. L. Ho, W. N. Fu, and W. Yan, “Modeling magnetic hysteresis under DC-biased magnetization using the neural network,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 3958–3961, 2009.
[31]. Giselher Herzer, “Modern soft magnets: Amorphous and nanocrystalline materials,” Acta Materialia, vol. 61, no. 3, pp. 718–734, 2013.
[32]. F. Fiorillo, C. Beatrice, M. Coisson, L. Zhemchuzhna, “Loss and Permeability Dependence on Temperature in Soft Ferrites,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4242–4245, 2009.
[33]. R. Parsons, B. Zang, K. Onodera, H. Kishimoto, A. Kato, K. Suzuki, “Soft magnetic properties of rapidly-annealed nanocrystalline Fe-Nb-B-(Cu) alloys,” Journal of Alloys and Compounds, vol. 723, pp. 408–417, 2017.
[34]. A. Makino, H. Men, T. Kubota, K. Yubuta, A. Inoue, “FeSiBPCu nanocrystalline soft magnetic alloys with high Bs of 1.9 Tesla produced by crystallizing heteroamorphous phase,” Materials Transactions, vol. 50, no. 1, pp. 204–209, 2009.
[35]. T. Kubota, A. Makino, A. Inoue, “Low core loss of Fe85Si2B8P4Cu1 nanocrystalline alloys with high Bs and B800,” Journal of Alloys and Compounds, vol. 509, pp. S416–S419, 2011.
[36]. Y. Zhang, P. Sharma, A. Makino, “Effects of cobalt addition in nanocrystalline Fe83.3Si4B8P4Cu0.7 soft magnetic alloy,” IEEE Transactions on Magnetics, vol. 50, no. 4, pp. 1–4, 2014.
[37]. K. Takenaka, A. D. Setyawan, P. Sharma, N. Nishiyama, and A. Makino, “Industrialization of nanocrystalline Fe-Si-B-P-Cu alloys for high magnetic flux density cores,” Journal of Magnetism and Magnetic Materials, vol. 401, pp. 479–483, 2016.
[38]. X. Zhao, L. Li, Z. Cheng, and J. Lu, “Analysis of magnetizing characteristic of laminated core based on the DC-biasing experiment,” Transactions of China Electrotechnical Society, vol. 26, no. 1, pp. 7–13, 2011.
[39]. G. Loizos and A. G. Kladas, “Core vibration analysis in Si-Fe distributed gap wound cores,” IEEE Transactions on Magnetics, vol. 48, no. 4, pp. 1617–1620, 2012.
[40]. S. C. Ji, Y. F. Luo, and Y. M. Li, “Research on extraction technique of transformer core fundamental frequency vibration based on OLCM,” IEEE Transactions on Power Delivery, vol. 21, no. 4, pp. 1981-1988, 2006.
[41]. C. Dong, A. Inoue, X.H. Wang, F.L. Kong, E.N. Zanaeva, F. Wang, A.I. Bazlov, S.L. Zhu, Q. Li, “Softmagnetic properties of Fe82-83B14-15Si2C0.5-1 amorphous alloyswith high saturation magnetization above 1.7 T,” Journal of Non-Crystalline Solids, vol. 500, pp. 173–180, 2018.
[42]. M. Ohta, Y. Yoshizawa, “New high-Bs Fe-based nanocrystalline soft magnetic alloys,” Japanese Journal of Applied Physics, vol. 46, pp. 20-24, 2007.
[43]. Philip Anderson, “Measurement of the stress sensitivity of magnetostriction in electrical steels under distorted waveform conditions,” Journal of Magnetism and Magnetic Materials, vol. 320, no. e583–e588, pp: e1-e6, 2008.
[44]. Ryusuke Hasegawa, “Applications of amorphous magnetic alloys,” Materials Science and Engineering A, vol. 375–377, pp: 90–97, 2004.
[45]. C. Suryanarayana, A. Inoue, “Iron-based bulk metallic glasses,” International Materials Reviews, vol. 58, no. 3, pp. 131–166, 2013.
[46]. J. F. Li, X. Liu, S. F. Zhao, H. Y. Ding, and K. F. Yao, “Fe-based bulk amorphous alloys with iron contents as high as 82at%,” Journal of Magnetism and Magnetic Materials, vol. 386, pp. 107–110, 2015.
[47]. A. M. K. Suzuki, N. Kataoka, and T. M. A. Inoue, “High saturation magnetization and soft magnetic properties of bcc Fe-Zr-B and Fe-Zr-B-M (M = transition metal) alloys with nanoscale grain size,” Materials Transactions, vol. 32, pp. 93–102, 1991.
[48]. X. J. Jia, Y. H. Li, G. Q. Xie, T. L. Qi, and W. Zhang, “Role of Mo addition on structure and magnetic properties of the Fe85Si2B8P4Cu1 nanocrystalline alloy,” Journal of Non-Crystalline Solids, vol. 481, pp. 590–593, 2018.
[49]. G. T. Xia, Y. G. Wang, J. Dai, and Y. D. Dai, “Effects of Cu cluster evolution on soft magnetic properties of Fe83B10C6Cu1 metallic glass in two-step annealing,” Journal of Alloys and Compounds, vol. 690, pp. 281–286, 2017.
[50]. G. Herzer, Modern soft magnets: amorphous and nanocrystalline materials, Acta Mater., vol. 61, no. 3, pp. 718–734, 2013.
[51]. M. Heathcote, J & P Transformer Book, 13th Edition - September 19, 2007, eBook ISBN: 9780080551784.
[52]. K. C. Agrawal, Industrial Power Engineering Handbook, 1st Edition - October 8, 2001, eBook ISBN: 9780080508634.
[53]. Electroacoustics - Sound level meters - Part 1: Specifications, IEC 61672-1 Std., 2013.
[54]. Power transformers - Part 10: Determination of sound levels, IEC 60076-10 Std., 2016.
[55]. International Standard IEC-60076-7, Power transformers-Part 7: Loading guide for oil-immersed power transformers, 2005.
[56]. Power Transformers-Part 3: Insulation levels, Dielectric Tests and External Clearances in Air, IEC60076-3, 2000.
[57]. High-Voltage Test Techniques, Part 1: General Definitions and Test Requirements, IEC 60060-1, 2010.
[58]. Richard H Lyon, Machinery Noise and Diagnostics, 1st Edition - July 15, 1987, eBook ISBN: 9781483289458.
[59]. J. Clark, AC Power Conditioners Design and Application, 1st Edition - December 28, 1989, eBook ISBN: 9780323159920.
[60]. K. Sueker, Power Electronics Design: A Practitioner′s Guide, 1st Edition - August 9, 2005, eBook ISBN: 9780080459929.
[61]. Q. Qiu, S. Dai, Z. K. Wang, T. Ma, L. Hu, Z. Q. Zhu, and G. M. Zhang., “Winding design and electromagnetic analysis for a 1250-kVA HTS transformer,” IEEE Transactions on Applied Superconductivity, vol. 25, no. 1, pp. 5500107-1-7, 2015.
[62]. A. Bakshi and S. V. Kulkarni, “Coupled electromagnetic-structural analysis of the spiraling phenomenon in a helical winding of a power transformer,” IEEE Transactions on Power Delivery, vol. 29, no. 1, pp. 235–240, 2014.
[63]. B. Zhang, N. Yan, S. Ma, and H. Wang, “Buckling strength analysis of transformer windings based on electromagnetic thermal structural coupling method,” IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 0601804-1-4, 2019.
[64]. S. A. Ryder, “Diagnosing transformer faults using frequency response analysis,” IEEE Electrical Insulation Magazine, vol. 19, no. 2, pp. 16–22, 2013.
[65]. D. S. Liu , J. C. Li, S. H. Wang, S. Y. Yang and J. Ye, “Detection and analysis of fault for HTS AMDT cores by magnetostriction-induced vibration,” IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 5500705-1-5, 2019.
[66]. K. Samarawickrama, N. D. Jacob, A. M. Gole, and B. Kordi, “Impulse generator optimum setup for transient testing of transformers using frequency response analysis and genetic algorithm,” IEEE Transactions on Power Delivery, vol. 30, no. 4, pp. 1949–1957, 2015.
[67]. H. Ni, N. Guo, Y. Zhao, X. Li, Q. Zhang, W. Yuan, X. Liu, and T. Wang, “Wavefront dependent dielectric strength of transformer oil under double-exponential impulse voltage,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, no. 5, pp. 1758–1765, 2018.
[68]. O. Kherif, S. Chiheb, M. Teguar, A. Mekhaldi, and N. Harid, “Timedomain modeling of grounding systems’ impulse response incorporating nonlinear and frequency-dependent aspects,” IEEE Transactions on Electromagnetic Compatibility, IEEE Transactions on Electromagnetic Compatibility, vol. 60, no. 4, pp. 907–916, 2018.
[69]. T. H. Thang, Y. Baba, V. A. Rakov, and A. Piantini, “FDTD computation of lightning-induced voltages on multiconductor lines with surge arresters and pole transformers,” IEEE Transactions on Electromagnetic Compatibility, vol. 57, no. 3, pp. 442–447, 2015.
[70]. A. Borghetti, A. Morched, F. Napolitano, C. A. Nucci, and M. Paolone, “Lightning-induced overvoltages transferred through distribution power transformers,” IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 360–372, 2009.
[71]. A. De Conti, V. C. Oliveira, P. R. Rodrigues, F. H. Silveira, J. L. Silvino, and R. Alipio, “Effect of a lossy dispersive ground on lightning overvoltages transferred to the low-voltage side of a single-phase distribution transformer,” Electric Power Systems Research, vol. 153, pp. 104–110, 2017.
[72]. Md Rabiul Islam, Y. G. Guo, and J. G. Zhu, “A medium frequency transformer with multiple secondary windings for medium voltage converter-based wind turbine power generating systems,” Journal of Applied Physics, vol. 113, pp. 17A324, 2013.
[73]. M. Rausch, M. Kaltenbacher, H. Landes, and R. Lerch, “Combination of finite and boundary element methods in investigation and prediction of load-controlled noise of power transformers,” Journal of Sound and Vibration, vol. 250, no. 2, pp. 323-338, 2002.
[74]. T. Ben, L. Q. Hou, L. Chen, P. Zhang, Y. K. Kong, and R. Yan, “The Vector Electromagnetic Vibration of Magnetically Controlled Reactor Considering the Vector Hysteretic Magnetostriction Effect,” IEEE Trans.Magn., vol. 58, no. 9, pp. 1-5, 2022.
[75]. L. H. Zhu, J. J. Li, Q. X. Yang, J. G. Zhu, C. S, Koh, “An Improved Magnetostriction Model for Electrical Steel Sheet Based on Jiles–Atherton Model,” IEEE Transactions on Magnetics, vol. 56, no. 4, pp. 7514604-1-4, 2022.
[76]. Kengo Takahashi, Daichi Azuma, Ryusuke Hasegawa, “Acoustic and Soft Magnetic Properties in Amorphous Alloy-Based Distribution Transformer Cores,” IEEE Transactions on Magnetics, vol. 49, no. 7, pp.4001-4004, 2013.
[77]. D. Azuma and R. Hasegawa, “Audible Noise from Amorphous Metal and Silicon Steel-Based Transformer Core,” IEEE Transactions on Magnetics, vol. 44, no. 11, pp.4104-4108, 2008.
[78]. B. X. Du and D. S. Liu, “Dynamic Behavior of Magnetostriction-Induced Vibration and Noise of Amorphous Alloy Cores,” IEEE Transactions on Magnetics, vol. 51, no. 4, pp. 7208708-1-4, 2015.
[79]. Y. J. Li, Z. T. Yang, C. G. Zhang, and S. H. M, “Vibration and Noise Measurement of medium-high frequency Transformer Cores under Non-Sinusoidal Excitation,” IEEE Transactions on Magnetics, vol. 58, no. 8, pp. 8401405, 2022.
[80]. Y. Dou, Y. J. Li, C. G. Zhang, S. C. Yue, and J. G. Zhu, “Effects of Uniaxial Stress Along Different Directions on Alternating Magnetic Properties of Silicon Steel Sheets,” IEEE Transactions on Magnetics, vol. 56, no. 3, pp. 7512004-1-4, 2022.
[81]. Y. J. Li, Z. T. Yang, C. G. Zhang, and S. H. Mu, “Vibration and Noise Measurement of medium-high frequency Transformer Cores under Non-Sinusoidal Excitation,” IEEE Transactions on Magnetics, vol. 58, no. 8, pp. 8401405-1-4, 2022.
指導教授 黃以玫(HUANG, YI-MEI) 審核日期 2023-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明