博碩士論文 108383602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:18.216.83.240
姓名 蘇安圖(Moeso Andrianto)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用旋風式銑削及盤型加工方法於雙包絡蝸桿及滾齒凸輪加工之研究
(A Study on Whirl-Milling and Disk-Type Machining Methods for Manufacturing Double-Enveloping Worms and Roller-Gear Cams)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-11以後開放)
摘要(中) 球面狀工件在工業中廣泛應用,尤其雙包絡蝸桿在具有空間限制及高減速比需求之設備中得到更廣泛應用。相較於非包絡蝸桿,雙包絡蝸桿具有更高的傳動效率及接觸比,因此提出高效加工雙包絡蝸桿之方法變得至關重要。本研究提出了應用旋風式銑削於加工ZK型雙包絡蝸桿之泛用方法。旋風式銑削方法具有高精度且高效之加工特點,優於傳統的銑削加工方法。同時,滾齒凸輪相對於其他凸輪從動件系統更具有優勢。然而,目前尚未將旋風式銑削應用於滾齒凸輪之加工製造中。因此,本研究同時提出了應用旋風式銑削於加工滾齒凸輪之創新方法,並且建立了用於球面狀轉子表面加工之泛用數學模型,該方法通過使用盤型刀具同時加工工件兩側。透過虛擬切削模擬與分析,驗證了球面狀轉子表面之加工之可行性。提出了機械設定和座標系統,同時亦建立了刀具與工件表面之數學模型。驗證了應用於機台生成工件表面之加工可行性。通過使用旋風式銑削和盤型切削刀具進行球面狀轉子表面加工之數值模擬,求解了切削點的數值解以及球面狀轉子表面之法向誤差。在不考慮磨削和考慮磨削余量之情況下,對數學建模進行驗證,並針對機械設定對於法向誤差之敏感度進行分析,探討各加工軸附加運動對加工效果之影響。在考慮切削工具裝配誤差情況下,使用Levenberg–Marquardt算法對機械設定進行了數值求解。使用VERICUT進行了虛擬切削模擬,並對數學模型進行了驗證。最後,提供了加工實例之結果,以驗證本研究所提出之方法在製造球面狀轉子表面方面的優勢。
摘要(英) Workpieces with a globoidal shape have been used extensively in industry. Double-enveloping worms (DEWs) are widely used in many applications, especially space-saving and high-reduction ratio equipment. DEWs have a higher transmission efficiency and contact ratio than non-enveloping worms. Proposing an effective and efficient method for machining the DEW is an issue that needs to be solved. This study offers a general method to manufacture ZK-type worms of DEW using a whirl-machining process. The whirl-machining process is a precise, efficient, and promising machine process for manufacturing workpieces over the milling process. At the same time, the roller-gear cam has advantages over the other cam-follower system. However, the whirl-machining process has yet to be applied to manufacture the roller-gear cam. Therefore, this study also proposes a novel method for roller-gear cam manufacturing using a whirl-machining process. Furthermore, a novel general mathematical model for globoidal rotor surface machining is developed. The machining process for both flank surfaces of the workpiece is conducted simultaneously using a disk-type cutting tool. Analytical and virtual cutting simulation on globoidal rotor surface machining is investigated. The machine setting and the coordinate system are proposed. A mathematical model for the surface of the tool and workpiece is presented. The generation of the workpiece surface on the offered machine is investigated. The machining process simulation of the globoidal rotor surface by the whirl-machining and disk-type cutting tool, the numerical solution of cutting points, and the normal deviation of the globoidal rotor surface are solved. Verification of mathematical modeling without considering grinding and considering grinding allowance, sensitivity analysis for machine-axis settings concerning normal deviation, the influence of additional movements for each machining axis, a simulation machining with cutting tool assembly error, and the the numerical solution for machine-axis settings using Levenberg–Marquardt algorithm are conducted. Virtual cutting simulation is presented using VERICUT. Verification of mathematical modeling is conducted. Results from the machining examples are presented to verify the advantages of manufacturing the globoidal rotor surfaces in the proposed method.
關鍵字(中) ★ ZK型蝸桿
★ 雙包絡蝸桿
★ 滾齒凸輪
★ 旋風式銑削
★ 盤形刀具
關鍵字(英) ★ ZK-type worm
★ double-enveloping worm
★ roller-gear cam
★ whirl-machining
★ disk-type tool
論文目次 Abstract i
摘要 ii
Table of contents iii
List of figures v
List of tables viii
Chapter 1 Introduction 1
1.1 Research background 1
1.2. Literature review 3
1.3 Research objective 5
1.4 Dissertation overview 6
Chapter 2 Mathematical model of the workpiece of globoidal rotor surface 8
2.1 Mathematical model for generating double-enveloping worm 8
2.1.1 Generation of worm surface 8
2.1.2 Generation of the mating gear surface 12
2.2 Mathematical model for generating roller-gear cam 17
2.2.1 Generation of cam surface 17
2.2.2 Generation of the roller surface 20
2.3 Mathematical model for generating hourglass worm 21
Chapter 3 Mathematical model of the cutting tool 25
3.1 Generation of the cutting tool profile 25
3.1.1 Generation of the whirl-machining tool profile for DEW manufacturing 25
3.1.2 Generation of the whirl-machining tool profile for RGC manufacturing 28
3.1.3 Generation of the disk-type cutting tool profile for Hourglass worm and RGC manufacturing 29
3.2 Generation of the cutting tool surface 30
3.3 Generation of the workpieces on the cutting tools 32
Chapter 4 Analytical and virtual cutting simulation 37
4.1 Analytical cutting simulation 37
4.2 Virtual cutting simulation 38
Chapter 5 Numerical Examples 40
5.1 Numerical examples of DEW whirl-machining 40
5.1.1 Verification of the proposed mathematical model 40
5.1.2 Applying the proposed tool for cylindrical worm manufacturing 43
5.1.3 Mathematical model simulation of worm gear drive conjugation 44
5.1.4 Virtual cutting simulation on worm 45
5.2 Numerical examples of RGC whirl-machining 46
5.2.1 Normal deviations for globoidal roller-gear cam with cylindrical roller 48
5.2.2 Globoidal roller-gear cam with conical roller and cylindrical roller-gear cam with conical roller 49
5.2.3 The conjugation of the roller and the roller-gear cam 52
5.2.4 Virtual cutting verification 52
5.3 Numerical examples of hourglass worm and RGC grinding manufacturing 54
5.3.1 Verification of mathematical modelling without considering grinding allowance 55
5.3.2 Verification of mathematical modelling considering grinding allowance 58
5.3.3 Sensitivity analysis for machine-axis settings in relation to normal deviations of generated workpiece surface 58
5.3.4 Influence of additional movements for each machining axis on globoidal rotor surface 60
5.3.5 Simulation of globoidal rotor machining with cutting tool assembly error 62
5.3.6 Numerical solution for machine-axis settings using Levenberg–Marquardt algorithm 64
5.3.7 Roller-gear cam 65
5.3.8 Virtual machining simulation result 67
5.3.9 The conjugation of the workpieces with their mating part 68
Chapter 6 Conclusion and future work 70
6.1 Conclusion 70
6.2 Future work 71
6.3 List of SCI publications 71
Appendix 72
References 73
Author profile 79
參考文獻 [1] F. L. Litvin and A. Fuentes, Gear Geometry and Applied Theory, 2nd ed., Cambridge University Press, Cambridge, UK, 2004.
[2] Z. Zheng, Y. Chen, B. Chen, X. Du, and C. Li, Meshing performance investigations on a novel point-contact hourglass worm drive with backlash-adjustable, Mechanism and Machine Theory, 149: 103841, 2020.
[3] L. V. Mohan and M. S. Shunmugam, Geometrical aspects of double enveloping worm gear drive, Mechanism and Machine Theory, 44: 2053-2065, 2009.
[4] K. Y. Chen and C. B. Tsay, Mathematical model and worm wheel tooth working surfaces of the ZN-type hourglass worm gear set, Mechanism and Machine Theory, 44: 1701-1712, 2009.
[5] H. S. Yan and H. H. Chen, Geometry design of globoidal cams with generalized meshing turret-rollers. Journal of Mechanical Design 118, 1996.
[6] D. M. Tsay, N. J. Huang, and B. J. Lin, Geometric design of roller gear cam reducers. Journal of Mechanical Design 121, 1999.
[7] P. D. Lin and M. F. Lee, Applications of D-H notation in machining and on-line measurement of roller-gear cams on 5-axis machine tools. Journal of Manufacturing Science and Engineering 119, 1997.
[8] S. L. Chen and S. F. Hong, Surface generation and fabrication of roller gear cam with spherical rollers. Journal of Advance Mechanical Design, System, and Manufacturing 2:3, 2008.
[9] H. S. Yan and H. H. Chen, Geometry design and machining of roller gear cams with cylindrical rollers. Mechanism and Machine Theory 29:6, 1994.
[10] T. N. Van and P. Pokorny, Modelling concave globoidal cam with indexing turret follower: A case study. International Journal of Computer Integrated Manufacturing 22:10, 2009.
[11] J. S. Lo, C. H. Tseng and C. B. Tsay, A study on the bearing contact of roller gear cams. Comput. Methods Appl. Mech. Engrg. 190:4649-4662, 2001.
[12] Y. Zhao, D. Su, and Z. Zhang, Meshing analysis and technological parameters selection of dual tori double-enveloping toroidal worm drive, Mechanism and Machine Theory 45: 1269-1285, 2010.
[13] Y. Zhao and Z. Zhang, Computer aided analysis on the meshing behavior of a height-modified dual-torus double-enveloping toroidal worm drive, Computer-Aided Design 42: 1232-1240, 2010.
[14] Y. Chen, G. Zhang, B. Chen, W. Luo, F. Li, and Y. Chen, A novel enveloping worm pair via employing the conjugating planar internal gear as counterpart, Mechanism and Machine Theory 67: 17-31, 2013.
[15] P. Polowniak, M. Sobolak, and A. Marciniec, Mathematical model of the worm wheel tooth flank of a double-enveloping worm gear, Alexandria Engineering Journal 60: 3037-3046, 2021.
[16] S. Dinga, Z. Song, W. Wu, E. Guo, X. Huang, and A Song, Geometric error modeling and compensation of horizontal CNC turning center for TI worm turning, International Journal of Mechanical Sciences 167: 105266, 2020.
[17] L. Wang, Y. He, Y. Wang, Y. Li, C. Liu, S. Wang, and Y. Wang, Analytical modeling of material removal mechanism in dry whirling milling process considering geometry, kinematics and mechanics. International Journal of Mechanical Sciences 172:105419, 2020.
[18] S. Q. Song and D. W. Zuo, Modelling and simulation of whirling process based on equivalent cutting volume. Simulation Modelling Practice and Theory 42:98–106, 2014.
[19] Y. He, L. Wang, Y. Wang, Y. Li, S. Wang, Y. Wang , C. Liu, and C. Hao, An analytical model for predicting specific cutting energy in whirling milling process. Journal of Cleaner Production 240:118181, 2019.
[20] L. V. Mohan and M. S. Shunmugam, Simulation of whirling process and tool profiling for machining of worms. Journal of Materials Processing Technology 185:191-197, 2007.
[21] T. Matsumura, M. Serizawa, T. Ogawa, and M. Sasaki, Surface dimple machining in whirling. Journal of Manufacturing Systems 37:487-493, 2015.
[22] M. Soshi, F. Rigolone, J. Sheffield, and K. Yamazaki, Development of a directly-driven thread whirling unit with advanced tool materials for mass-production of implantable medical parts. CIRP Annals - Manufacturing Technology 1:117-120, 2018.
[23] C. Liu, Y. He, Y. Li, Y Wang, L. Wang, S. Wang, and Y. Wang, Predicting residual properties of ball screw raceway in whirling milling based on machine learning. Measurement 173:108605, 2021.
[24] C. Liu, Y He, Y. Wang, Y. Li, S. Wang, L. Wang, and Y. Wang, An investigation of surface topography and workpiece temperature in whirling milling machining. International Journal of Mechanical Sciences 164:105182, 2019.
[25] Y. Wang, C. Yin, L. Li, W. Zha, X. Pu, Y. Wang, J. Wang, and Y. He, Modeling and optimization of dynamic performances of large-scale lead screws whirl milling with multi-point variable constraints. Journal of Materials Processing Technology 276:116392, 2020.
[26] Y. He, C. Liu, Y. Wang, Y. Li, S. Wang, L. Wang, and Y. Wang, Analytical modeling of temperature distribution in lead-screw whirling milling considering the transient un-deformed chip geometry. International Journal of Mechanical Sciences 157-158: 619-632, 2019.
[27] M. Serizawa, M. Suzuki, T. Matsumura, Microthreading in Whirling. Journal of Micro- and Nano-Manufacturing 3: 041001-1, 2015.
[28] S. P. Radzevich, Theory of Gearing Kinematics, Geometry, and Synthesis, Second Edition: Revised and Expanded, Taylor & Francis Group, LLC, 2018.
[29] W. Zhou, J.Tang, H. Chen, W. Shao, and B. Zhao, Modeling of tooth surface topography in continuous generating grinding based on measured topography of grinding worm, Mechanism and Machine Theory 131: 189–203, 2019.
[30] Y. Wang, Y. Chen, G. Zhou, Q. Lv, Z. Zhang, W. Tang, and Y Liu, Roughness model for tooth surfaces of spiral bevel gears under grinding, Mechanism and Machine Theory 104: 17–30, 2016.
[31] Y. Zhao, J. Kong, G. Li, and T. Wu, Tooth flank modification theory of dual-torus double-enveloping hourglass worm drives, Computer-Aided Design 43: 1535-1544, 2011.
[32] W. Shi, D. Qin, and W. Xu, Meshing control of the double-enveloping hourglass worm gearing under the conditions of existing the errors and the load, Mechanism and Machine Theory 39: 61-74, 2004.
[33] Y. Zhao, J. Kong, G. Li, T. Wu, and S. Shi, Computerized simulation of tooth contact and error sensitivity investigation for ease-off hourglass worm drives, Computer-Aided Design 44: 778-790, 2012.
[34] H. Chen, Z. Ju, C. Qu, X. Cai, Y. Zhang, and J. Liu, Error-sensitivity analysis of hourglass worm gearing with spherical meshing elements, Mechanism and Machine Theory 70: 91-105, 2013.
[35] V. Simon, “Load Distribution in Double Enveloping Worm Gears, Journal of Mechanical Design 115(3): 496-501, 1993.
[36] V. Simon, Stress Analysis in Double Enveloping Worm Gears by Finite Element Method, Journal of Mechanical Design 115(1): 179-185, 1993.
[37] H. S. Yan and H. H. Chen, Geometry design of roller gear cams with hyperboloid rollers. Mathl. Comput. Modelling 22(8):107-117, 1995.
[38] Y. Zhang, S. Ji and J. Zhao, Study on the geometric characteristics of mating surfaces of globoidal cam mechanisms. Mechanism and Machine Theory 100:44–62, 2016.
[39] C. Zongyu, Z. Ce, Y. Yuhu, and W. Yuxin, A study on dynamics of roller gear cam system considering clearances. Mechanism and Machine Theory 36:143-152, 2001.
[40] B. Denkena, A. Schindler, and S Woiwode, Calculation method of the contact area in flank machining for continuous generating grinding, Applied Mathematical Modelling 40: 7138–7146, 2016.
[41] J. L. G. Santander, Analytic solution for maximum temperature during cut in and cut out in surface dry grinding, Applied Mathematical Modelling 40: 2356-2367, 2015.
[42] T. N. Shiau, K. H. Huang, F. C. Wang, K. H. Chen, and C. P. Kuo, Dynamic response of a rotating ball screw subject to a moving regenerative force in grinding, Applied Mathematical Modelling 34 1721–1731, 2010.
[43] P. Stepien, A probabilistic model of the grinding process, Applied Mathematical Modelling 33: 3863–3884, 2009.
[44] D. L. Skuratov, Yu. L. Ratis, I. A. Selezneva, J. Pe´rez, P. F. Co´rdoba, and J. F. Urchueguıa, Mathematical modelling and analytical solution for workpiece temperature in grinding, Applied Mathematical Modelling 31: 1039–1047, 2007.
[45] Y. R. Wu, and W. H. Hsu, A general mathematical model for continuous generating machining of screw rotors with worm-shaped tools, Applied Mathematical Modelling 38: 28–37, 2014.
[46] Y. C. Yang, Y. R. Wu, and T. M. Tsai, An analytical method to control and predict grinding textures on modified gear tooth flanks in CNC generating gear grinding, Mechanism and Machine Theory Volume 177: 105023, 2022.
[47] V. V. Simon, Grinding of hypoid gears by applying generating and Waguri motions, Mechanism and Machine Theory 179: 105100, 2023.
[48] A. Beaucamp, B. Kirsch, and W. Zhu, Advances in grinding tools and abrasives, CIRP Annals 71: 623-646, 2022.
[49] R. Nair and L. Pau, Advancements in abrasive electrical discharge grinding (AEDG): A review, Material today 72: 2897-2903, 2022.
[50] Y. P. Shih and S. D. Chen, A flank correction methodology for a five-axis CNC gear profile grinding machine, Mechanism and Machine Theory 104 17–30, 2016.
[51] L. Wei, J. W. Liang, L. Gui, W. Bo, M. S. Alsoufi, A. Elsheikh, and A. M. M. Ibrahim, Analysis of large edge breakage of WC-Co cemented carbide tool blades emerging in precision grinding process, Journal of Materials Research and Technology 19: 3916-3929, 2022.
[52] Md. R. Pervez, Md. H. Ahamed, Md. A. Ahmed, S. M. Takrim, and P. Dario, Autonomous grinding algorithms with future prospect towards SMART manufacturing: A comparative survey, Journal of Manufacturing Systems 62: 164-185, 2022.
[53] H. S. Fang and C. B. Tsay, Mathematical Model and Bearing Contacts of the ZK-Type Worm Gear Set Cut by Oversize Hob Cutter, Mechanism and Machine Theory 31(3): 271-282, 1996.
[54] Z. Liu, H. Lu, S. Wang and G. Yu, Digitization modeling and CNC machining for cone-generated double-enveloping worm drive, The International Journal of Advanced Manufacturing Technology 95: 3393–3412, 2018.
[55] Y. A. Lu, C. Y. Wang and L. Zhou, Geometric deviation evaluation for a five-axis flank milling tool path using the tool swept envelope, International Journal of Advanced Manufacturing Technology 105: 1811–1821, 2019.
[56] G. Li, A new algorithm to solve the grinding wheel profile for end mill groove machining, International Journal of Advanced Manufacturing Technology 90:775–784, 2017.
[57] J. Sohn and N. Park, Geometric interference in cylindrical worm gear drives using oversized hob to cut worm gears, Mechanism and Machine Theory 100: 83-103, 2016.
[58] F. L. Litvin, Development of Gear Technology and Theory of Gearing, National Aeronautics and Space Administration, Lewis Research Center, 1997.
[59] M. Andrianto, Y. R. Wu, and A. Arifin, A novel manufacturing method for double-enveloping worms using a whirl-machining process, Mechanism and Machine Theory 179: 105099, 2022.
[60] M. Andrianto, Y. R. Wu and A. Arifn, Mathematical modeling on a novel manufacturing method for roller-gear cams using a whirl-machining process, International Journal of Advanced Manufacturing Technology 2023.
[61] V. Q. Tran and Y. R. Wu, A novel method for closed-loop topology modification of helical gears using internal-meshing gear honing, Mechanism and Machine Theory 145: 103691, 2020.
[62] K. Kawasaki and I. Tsuji, Machining method of large-sized cylindrical worm gears with Niemann profiles using CNC machining center, The International Journal of Advanced Manufacturing Technology 104: 3717–3729, 2019.
[63] Y. Chen, G. Yin, Y. Chen, F. Wang, Study on the grinding technology and measure method for planar enveloping hourglass worm, The International Journal of Advanced Manufacturing Technology 106:4745–4754, 2020.
指導教授 吳育仁(Wu, Yu-Ren) 審核日期 2023-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明