博碩士論文 109323609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.145.60.29
姓名 莫堂奇(Imam Muttaqin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Experimental Study of Dry Sand Particles Flow Behavior Through a Constricted Channel on a Smooth Surface)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 顆粒流在工業和自然環境中有著複雜的現象,其流動行為受到固體和類液體行為之間相互作用的強烈影響。在這項研究中,使用由帶有儲存槽的矩形滑槽所組成的實驗設備,研究了顆粒崩塌流的行為,在實驗中讓顆粒以不同的傾斜角以及不同的收縮寬度通過狹窄的縮口。實驗結果表明,顆粒流動行為高度依賴於傾斜角和收縮寬度,流動的速度大小隨著傾斜角的增加而增加,震波角曲線與尾流角曲線呈現相反的關係。此外,通過分析觀察了流動深度。顆粒層隨著收縮寬度的減小和傾斜角的增加而增加,這表明重力對於流場性質有著重要的影響。顆粒流中的能量耗散與顆粒之間的摩擦相互作用密切相關,顆粒之間的接觸減少,導致摩擦引起的能量損失減少,使得流速增加。這些結果為顆粒流的基本物理學提供了新的見解,並對一系列工業和自然現象具有重要影響。
摘要(英) Granular flows are complex phenomena that arise in various industrial and natural contexts, and their behavior is strongly affected by the interplay between solid and liquid-like behavior. In this study, the behavior of granular avalanches was investigated using an experimental setup consisting of a rectangular channel with a hopper column, where sand particles are released at different inclinations and through constricted channels. The experimental results reveal that the granular flow behavior is highly dependent on the inclination angle and width of the channel, as well as the presence of wedges. The experiment findings demonstrate that the velocity magnitude of the flow increases with the inclination angle, and that the shock angle curve and wake angle curve exhibit an opposite relationship. Furthermore, the flow depth was observed through the analyzing process. It shows that the particle layer increases with decreasing contraction width and increasing inclination angle, indicating that gravitational forces play a critical role in particle disposition. The findings revealed that the energy dissipation in the granular flow is closely related to the frictional interactions between particles, with less contact between particles resulting in less energy loss due to friction and greater flow velocities. These results shed new light on the fundamental physics of granular flows and have important implications for a range of industrial and natural processes.
關鍵字(中) ★ 砂粒流
★ 傾斜角
★ 收縮通道
★ 速度大小
★ 流動深度
★ 震波角
關鍵字(英) ★ Sand particle flow
★ Inclination angle
★ constricted channel
★ velocity magnitude
★ flow depth
★ shock angle
論文目次 Table of Content

National Central University Library Authorization For Thesis i
Advisor Recommendation of Graduate Student ii
Verification Letter from Oral Examination iii
摘要 iv
Abstract v
Acknowledgements vi
Table of Content vii
List of Figures ix
List of Tables xi
List of Symbols and Abbreviations xii
Chapter I 1
Introduction 1
Chapter II 3
Theoretical Background and Literature Review 3
2.1 Theoretical Background 3
2.1.1 Contact Forces of Granular Flow 3
2.1.2 Collisions or Rapid Granular Flows 4
2.1.4 Models of Rapid Granular Flow 5
2.2 Literature Review 6
Chapter III 9
Experimental Overview 9
3.1 Experimental Setup 9
3.2 Experimental Procedures 12
3.2.1 High-Speed Camera Test 12
3.2.2 Gocator Laser Measurement 14
3.3 Data Analysing 15
3.3.1 Velocity Fields Analyzing 15
Image pre-processing 16
Image Cross-Correlation 16
Post-processing 17
Data Exploration 17
Data Plotting 18
3.3.2 Flow Depth Analyzing 19
Chapter IV 20
Results and Discussion 20
4.1 Raw Images Data Results 20
4.2 Velocity Distribution 29
4.3 Flow Depth Result 41
4.4 Shock Angle and Wake Angle 52
4.5 Discussion 55
4.5.1 Relation between Incline Angle, Velocity Magnitude, and Shock Interaction 55
4.5.2 The Effect of Contraction Width on the Sand Particle Behaviour 57
4.5.3 Relation between Shock Angle and Particle Flow Depth 58
Chapter V 59
Conclusion and Outlook 59
5.1 Conlcusion 59
5.2 Limitations 59
References 60
參考文獻 1. Akers, B. Shallow Water Flow through a Contraction.
2. Akers, B. & Bokhove, O. Hydraulic flow through a channel contraction: Multiple steady states. Physics of Fluids 20, 056601 (2008).
3. Campbell, C. S. Granular material flows – An overview. Powder Technology 162, 208–229 (2006).
4. Baker, J. L., Barker, T. & Gray, J. M. N. T. A two-dimensional depth-averaged -rheology for dense granular avalanches. J. Fluid Mech. 787, 367–395 (2016).
5. Battam, N. W., Gorounov, D. G., Korolev, G. L. & Ruban, A. I. Shock wave interaction with a viscous wake in supersonic flow. J. Fluid Mech. 504, 301–341 (2004).
6. Bougie, J., Moon, S. J., Swift, J. B. & Swinney, H. L. Shocks in vertically oscillated granular layers. Phys. Rev. E 66, 051301 (2002).
7. Boudet, J. F., Amarouchene, Y. & Kellay, H. Shock Front Width and Structure in Supersonic Granular Flows. Phys. Rev. Lett. 101, 254503 (2008).
8. Choi, C. E., Ng, C. W. W., Liu, H. & Wang, Y. Interaction between dry granular flow and rigid barrier with basal clearance: analytical and physical modelling. Can. Geotech. J. 57, 236–245 (2020).
9. Denlinger, R. P. & Iverson, R. M. Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation: GRANULAR AVALANCHES ACROSS IRREGULAR TERRAIN, 1. J. Geophys. Res. 109, (2004).
10. Dufresne, A. Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events: GRANULAR FLOW EMPLACEMENT OVER SUBSTRATES. Earth Surf. Process. Landforms 37, 1527–1541 (2012).
11. Faug, T., Lachamp, P. & Naaim, M. Experimental investigation on steady granular flows interacting with an obstacle down an inclined channel: study of the dead zone upstream from the obstacle. Application to interaction between dense snow avalanches and defence structures. Nat. Hazards Earth Syst. Sci. 2, 187–191 (2002).
12. Vreman, A. W., Al-Tarazi, M., Kuipers, J. A. M., Van Sint Annaland, M. & Bokhove, O. Supercritical shallow granular flow through a contraction: experiment, theory and simulation. J. Fluid Mech. 578, 233–269 (2007).
13. Lun, C. & Savage, S. A simple kinetic theory for granular flow of rough, inelastic, spherical particles. 54, (1987).
14. Lun, C., Savage, S. B., Jeffrey, D. & Chepurniy, N. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of fluid mechanics 140, 223–256 (1984).
15. Gray, J., Tai, Y.-C. & Noelle, S. Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. Journal of Fluid Mechanics 491, 161–181 (2003).
16. Jenkins, J. & Askari, E. Hydraulic theory for a debris flow supported on a collisional shear layer. Chaos: An Interdisciplinary Journal of Nonlinear Science 9, 654–658 (1999).
17. Louge, M. Y. & Keast, S. C. On dense granular flows down flat frictional inclines. Physics of fluids 13, 1213–1233 (2001).
18. Mejean, S., Faug, T. & Einav, I. A general relation for standing normal jumps in both hydraulic and dry granular flows. Journal of Fluid Mechanics 816, 331–351 (2017).
19. Beetstra, R., van der Hoef, M. A. & Kuipers, J. Drag force of intermediate Reynolds number flow past mono‐and bidisperse arrays of spheres. AIChE journal 53, 489–501 (2007).
20. Deen, N., Annaland, M. V. S., Van der Hoef, M. A. & Kuipers, J. Review of discrete particle modeling of fluidized beds. Chemical engineering science 62, 28–44 (2007).
21. van der Hoef, M. A., van Sint Annaland, M., Deen, N. & Kuipers, J. Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 47–70 (2008).
22. van der Hoef, M. A. et al. Multiscale modeling of gas-fluidized beds. Advances in chemical engineering 31, 65–149 (2006).
23. Troll, V. R. et al. Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia. Geophysical Research Letters 39, (2012).
24. Troll, V. R. et al. Ancient oral tradition describes volcano–earthquake interaction at merapi volcano, indonesia. Geografiska Annaler: Series A, Physical Geography 97, 137–166 (2015).
25. Troll, V. R. et al. Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes. Journal of Volcanology and Geothermal Research 261, 38–49 (2013).
26. Zhu, Y., Delannay, R. & Valance, A. High-speed confined granular flows down smooth inclines: scaling and wall friction laws. Granular Matter 22, 1–12 (2020).
27. Silbert, L. E. et al. Granular flow down an inclined plane: Bagnold scaling and rheology. Physical Review E 64, 051302 (2001).
28. Tregaskis, C., Johnson, C., Cui, X. & Gray, J. Subcritical and supercritical granular flow around an obstacle on a rough inclined plane. Journal of Fluid Mechanics 933, A25 (2022).
29. Campbell, C. S. Rapid granular flows. Annual Review of Fluid Mechanics 22, 57–90 (1990).
30. Savage, S. B. & Hutter, K. The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mechanica 86, 201–223 (1991).
31. Popov, V. L. & Popov, V. L. Coulomb’s law of friction. Contact Mechanics and Friction: Physical Principles and Applications 151–172 (2017).
32. Bagnold, R. A. The physics of blown sand and desert dunes. (Courier Corporation, 2012).
33. Cui, X. et al. Granular flow around a cylindrical obstacle in an inclined chute. Physics of Fluids 34, 093308 (2022).
34. Akers, B. & Bokhove, O. Hydraulic flow through a channel contraction: Multiple steady states. Physics of fluids 20, 056601 (2008).
35. Brucks, A., Arndt, T., Ottino, J. M. & Lueptow, R. M. Behavior of flowing granular materials under variable g. Physical Review E 75, 032301 (2007).
36. Campbell, C. S. Granular material flows–an overview. Powder Technology 162, 208–229 (2006).
37. Luding, S. Molecular dynamics simulations of granular materials. in The physics of granular media 297–324 (Wiley, 2005).
38. Duran, J. Sands, powders, and grains: an introduction to the physics of granular materials. (Springer Science & Business Media, 2012).
39. Behringer, R. P. Sands, powders, and grains: An introduction to the physics of granular materials. Physics Today 54, 63–64 (2001).
40. Zhang, Y. & Campbell, C. S. The interface between fluid-like and solid-like behaviour in two-dimensional granular flows. Journal of Fluid Mechanics 237, 541–568 (1992).
41. Campbell, C. S. Boundary interactions for two-dimensional granular flows. Part 1. Flat boundaries, asymmetric stresses and couple stresses. Journal of Fluid Mechanics 247, 111–136 (1993).
42. Haff, P. K. Grain flow as a fluid-mechanical phenomenon. Journal of Fluid Mechanics 134, 401–430 (1983).
43. Marion, M. & Temam, R. Navier-Stokes equations: Theory and approximation. Handbook of numerical analysis 6, 503–689 (1998).
44. Constantin, P. & Foias, C. Navier-stokes equations. (University of Chicago Press, 2020).
45. Dufresne, A. Granular flow experiments on the interaction with stationary runout path materials and comparison to rock avalanche events: GRANULAR FLOW EMPLACEMENT OVER SUBSTRATES. Earth Surf. Process. Landforms 37, 1527–1541 (2012).
46. Pudasaini, S. P. et al. Rapid flow of dry granular materials down inclined chutes impinging on rigid walls. Physics of Fluids 19, 053302 (2007).
47. Cui, Y., Choi, C. E., Liu, L. H. & Ng, C. W. Effects of particle size of mono-disperse granular flows impacting a rigid barrier. Natural Hazards 91, 1179–1201 (2018).
48. Jiang, Y.-J., Zhao, Y., Towhata, I. & Liu, D.-X. Influence of particle characteristics on impact event of dry granular flow. Powder Technology 270, 53–67 (2015).
49. Khan, A., Hankare, P., Verma, S., Kumar, R. & Kumar, S. Shock detachment in granular flows. in Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019) 77–85 (Research Publishing Services, 2019). doi:10.3850/978-981-11-2730-4_0295-cd.
50. Siyou, X. et al. Experimental investigation on the impact force of the dry granular flow against a flexible barrier. Landslides 17, 1465–1483 (2020).
51. Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics international 11, 36–42 (2004).
52. Thielicke, W. & Stamhuis, E. J. PIVlab – Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. Journal of Open Research Software 2, (2014).
53. Scarano, F. & Riethmuller, M. L. Advances in iterative multigrid PIV image processing. Experiments in fluids 29, S051–S060 (2000).
54. Thielicke, W. & Sonntag, R. Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. Journal of Open Research Software 9, (2021).
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明