博碩士論文 110323088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.137.174.216
姓名 蔣駿麟(JUN-LIN JIANG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用聲波對水中微粒進行分離之研究
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 聲波具有非侵入性,可控制的顆粒尺寸範圍廣泛,本研究成功地利用聲波對微米尺度的粒子進行分離。在我們的研究中-首先,使用模擬軟體COMSOL進行了調變波的動態分析;之後,根據顆粒的不同材料和尺寸,我們規劃和設計了一系列的實驗,通過調整不同參數並分析其對分離效果的影響,而不同密度或直徑的顆粒表現出不同的沉降速度,需要通過實驗獲取分離過程中調變波的參數;最後,在不同條件下對單個或多個顆粒進行分離實驗。而目前我們做到的實驗階段,我們已可以成功分離數十微米的二氧化矽,進一步地分析和討論結果,我們預期在加工液的材料回收及溶液純化等方面有潛在應用價值。
摘要(英) In this study, we successfully utilized sound waves to separate micrometer-scale particles. We performed dynamic analysis of modulated waves using simulation software COMSOL. Based on the different materials and sizes of the particles, we designed experiments to analyze the separation effects by varying parameters and assessing their impact. Different particles exhibit varying sedimentation velocities depending on their densities or diameters, necessitating experiments to determine the parameters for modulated waves in the separation process. Finally, we conducted separation experiments for single or multiple particles under different conditions and analyzed and discussed the results and data. The non-intrusive nature of sound waves used in this experiment, along with their ability to control a wide range of particle sizes and manipulate micrometer-scale particles, makes sound wave-based separation experimentation a reasonable choice.
關鍵字(中) ★ 聲波
★ 加工液
★ 顆粒
關鍵字(英) ★ sound waves
★ processing fluid
★ particles
論文目次 學位論文授權書 iI
學位論文延後公開申請書 IiI
論文指導教授推薦書 iV
論文口試委員審定書 V
摘要 Vi
Abstract VixI
致謝 VIII
目錄 IX
圖目錄 xiiI
表目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 研究目的與動機 1
1.3 非接觸式微粒分離背景回顧 2
第二章 基礎理論 8
2.1 駐波理論 8
2.2 流體運動方程式 10
2.2.1 連續方程式 10
2.2.2 動量方程式 111
2.2.3 流體狀態方程式 12
2.3 線性波動方程式 12
2.4 聲輻射壓力 14
2.4.1聲場的駐波理論 16
2.4.2聲輻射力 17
2.4.3側向輻射力 18
2.4.4斯托克斯黏滯阻力(Stokes′ drag force) 19
2.5 平面駐波場中剛性小球體的聲輻射力 20
2.6 平面駐波場中剛性小球體的聲輻射力 24
2.6.1阻力係數C_D與雷諾數Re的關係 24
2.6.2下落固體的終端速度 26
2.7方程式結合所得到的值 27
第三章 實驗架設與設計 29
3.1 實驗架構 29
3.2 PZT理論 31
3.3 聲阻抗匹配理論 35
3.3.1特定聲阻抗(z) 35
3.3.2聲阻抗(Z) 40
3.4 聲流產生機制 45
3.5 材料參數 48
3.5.1 COMSOL內建PZT材料及其參數 51
3.6 實驗模擬與設計 52
3.6.1 駐波場模擬分析 53
3.6.2 調變波模擬分析 58
3.6.3 PZT模擬分析 65
3.6.4 模擬討論與實驗設計 66
第4章 實驗結果與討論 74
4.1 實驗結果 74
4.1.1 單與單分離結果與討論 74
4.1.2 群與單分離結果與討論 77
4.1.3 轉接頭中單與單分離結果與討論 80
4.2 實驗討論彙整 81
第五章 結論與未來展望 96
5.1 結論 96
5.2 未來展望 97
參考文獻 98
參考文獻 [01] Ting Wei Lin, CMP wastewater reclamation by using an integrated membrane filtration system, National Chiao Tung University, MASTER’S THESIS, 2012.
[02] Lijun Ye, et al. "Chemical precipitation granular sludge (CPGS) formation for copper removal from wastewater." RSC advances 6.115 114405-114411, 2016.
[03] Xiaoming Luo, Juhang Cao, Haoran Yin, Haipeng Yan, and Limin He. "Droplets banding characteristics of water-in-oil emulsion under ultrasonic standing waves." Ultrasonics Sonochemistry, vol. 41, pp. 319-326, 2018.
[04] Leah M. Johnson, et al. "Elastomeric microparticles for acoustic mediated bioseparations." Journal of nanobiotechnology 11 1-8, 2013.
[05] Xiaoyun Ding, Zhangli Peng, Sz-Chin Steven Lin, Michela Geri, Sixing Li, Peng Li, Yuchao Chen, Ming Dao, Subra Suresh, and Tony Jun Huang. "Cell separation using tilted-angle standing surface acoustic waves." Proceedings of the National Academy of Sciences, vol. 111, no. 36, pp. 12992-12997, 2014.
[06] Filip Petersson, Andreas Nilsson, Cecilia Holm, Henrik Jönsson, and Thomas Laurell. "Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels." Analyst, 129, 938-943, 2004.
[07] Jinjie Shi, Hua Huang, Zak Stratton, Yiping Huang and Tony Jun Huang. "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)." Lab on a Chip, vol. 09, no. 9, pp. 354–3359, 2009.
[08] Jeonghun Nam, et al. "Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave." Biomicrofluidics6.2 024120, 2012.
[09] Dzenan Hajdarovic. "Suppression of acoustic streaming in liquids of inhomogeneous density and compressibility." LUND UNIVERSITY, MASTER’S THESIS, 2016.
[10] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz. "Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics." Volume 6. Vol. 6. Elsevier, 2013.
[11] S. Kadri Harouna and Etienne Mémin. "Stochastic representation of the Reynolds transport theorem: revisiting large-scale modeling." Computers & Fluids 156 456-469, 2017.
[12] Marc Andrade, Nicolás Pérez, and Julio C. Adamowski. "Review of progress in acoustic levitation." Brazilian Journal of Physics, vol 48, no.2, pp. 190-213, 2018.
[13] Mikkel Settnes and Henrik Bruus."Forces acting on a small particle in an acoustical field in a viscous fluid." Physical Review E 85.1 016327, 2012.
[14] Henrik Bruus. "Acoustofluidics 7: The acoustic radiation force on small particles." Lab on a Chip 12.6 1014-1021, 2012.
[15] Thomas Laurell, Filip Petersson, and Andreas Nilsson. "Chip integrated strategies for acoustic separation and manipulation of cells and particles." Chemical Society Reviews 36.3 492-506, 2007.
[16] Mikael Evander and Johan Nilsson. "Acoustofluidics 20: Applications in acoustic trapping." Lab on a Chip 12.22 4667-4676, 2012.
[17] Lev Petrovich Gor′kov. "On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid." Soviet Physics Doklady, vol. 6, p. 773, 1962.
[18] Martin Gröschl. "Ultrasonic separation of suspended particles-Part I: Fundamentals." Acta Acustica united with Acustica 84.3 432-447, 1998.
[19] George Gabriel Stokes. "On the effect of the internal friction of fluids on the motion of pendulums." 8, 1851.
[20] Louis Vessot King. "On the acoustic radiation pressure on circular discs: Inertia and diffraction corrections." Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 153.878 1-16, 1935.
[21] Vivek T Rathod. "A review of acoustic impedance matching techniques for piezoelectric sensors and transducers." Sensors 20.14 4051, 2020.
[22] B. Jaffe, R. S. Roth, and S. Marzullo. "Piezoelectric properties of lead zirconate‐lead titanate solid‐solution ceramics." Journal of Applied Physics 25.6 809-810, 1954.
[23] Mikael Evander and Johan Nilsson. "Acoustofluidics 20: Applications in acoustic trapping." Lab on a Chip 12.22 4667-4676, 2012.
[24] Donald J Leo. "Engineering analysis of smart material systems." John Wiley & Sons, 2007.
[25] V. T. Rathod. "Ultrasonic Guided Wave based Models, Devices and Methods for Integrated Structural Health Monitoring.", PhD Thesis, Indian Institute of Science, Bengaluru, India, 2014.
[26] Seung-Eek Park, and Thomas R. Shrout. "Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers." IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 44.5 1140-1147, 1997.
[27] D. I. Crecraft. "Ultrasonic instrumentation: principles, methods and applications." Journal of Physics E: Scientific Instruments 16.3 181, 1983.
[28] Stewart Sherrit, et al. "Comparison of the Mason and KLM equivalent circuits for piezoelectric resonators in the thickness mode." 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027). Vol. 2. IEEE, 1999.
[29] Hajin Choi and John S. Popovics. "NDE application of ultrasonic tomography to a full-scale concrete structure." IEEE transactions on ultrasonics, ferroelectrics, and frequency control 62.6 1076-1085, 2015.
[30] Josef Krautkrämer and Herbert Krautkrämer. "Ultrasonic testing of materials." Springer Science & Business Media, 2013.
[31] Jeonghun Nam, Hyunjung Lim, Choong Kim, Ji Yoon Kang, and Sehyun Shin. "Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave." Biomicrofluidics, vol. 6, no.2, 2012.
[32] Martin Wiklund, Roy Green, and Mathias Ohlin, "Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices." Lab on a Chip, vol. 12, no. 14, pp.2438-2451, 2012.
[33] Wagner A. Kamakura and Jose Afonso Mazzon. "Value segmentation: A model for the measurement of values and value systems." Journal of consumer research 18.2 208-218, 1991.
[34] Martin Wiklund, Roy Green, and Mathias Ohlin. "Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices." Lab on a Chip 12.14 2438-2451, 2012.
[35] Angelica Castro and Mauricio Hoyos "Study of the onset of the acoustic streaming in parallel plate resonators with pulse ultrasound." Ultrasonics, vol. 66, pp. 166-171, 2016.
[36] David J. Collins, Tuncay Alan, and Adrian Neild. "Particle separation using virtual deterministic lateral displacement (vDLD)." Lab on a Chip, vol. 14, no. 9, pp. 1595-1603, 2014.
[37] Akira Hirose and Karl E. Lonngren, "Introduction to Wave Phenomena." R.E. Krieger Publishing Company, 1991.
[38] A. Haider and O. Levenspiel. "Drag coefficient and terminal velocity of spherical and nonspherical particles." Powder technology 58.1 63-70, 1989.
[39] A. R. Khan and J. F. Richardson. "The resistance to motion of a solid sphere in a fluid." Chemical Engineering Communications 62.1-6 135-150, 1987.
[40] Rory LC Flemmer and C. L. Banks. "On the drag coefficient of a sphere." Powder Technology 48.3 217-221, 1986.
[41] R. Turton and O. Levenspiel. "A short note on the drag correlation for spheres." Powder technology 47.1 83-86, 1986.
[42] R. Clift and W. H. Gauvin. "Motion of entrained particles in gas streams." The Canadian Journal of Chemical Engineering 49.4 439-448, 1971.
[43] Wilfrid Joseph Dixon. "BMDP: Biomedical computer programs." Univ of California Press, 1975.
[44] R. Turton and N. N. Clark. "An explicit relationship to predict spherical particle terminal velocity." Powder technology 53.2 127-129, 1987.
[45] Lawrence E. Kinsler, et al. "Fundamentals of acoustics."John wiley & sons, 2000.
[46] Piezo.com. Materials Technical Data (Typical Values). https://info.piezo.com/hubfs/Data-Sheets/piezo-material-properties-data-sheet-20201112.pdf.
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明