博碩士論文 110327019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.23.101.60
姓名 蔡岳哲(Yue-Jhe Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 單拍偏振干涉之表面形貌測量技術
(Single-Shot Polarization Interferometry for Technique of Surface Profile Measurement)
相關論文
★ 外差光學式光柵干涉儀之研究★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展
★ 雷射干涉儀於共焦顯微系統之軸向定位控制★ 偏振干涉術使用在量測旋光效應及葡萄糖濃度
★ 準共光程干涉術之新式大尺度定位平台之研究★ 波長調制外差散斑干涉術應用於角度量測之研究
★ 全場光強差動式表面電漿共振偵測技術★ 基於全內反射波長調制外差干涉術小角度測量
★ 新型波長調制外差光源應用於位移量測★ 疊紋式自動準直儀系統
★ 雙影像多視角結構光轉三維點資料技術發展★ 偏振式駐波干涉儀應用於位移量測
★ 雙共焦顯微鏡用於物體厚度量測★ 以電漿診斷工具進行太陽電池用矽薄膜製程開發
★ 基於全反射共光程偏振干涉術之折射率量測技術★ 點繞射干涉儀應用於透鏡之像差量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-1以後開放)
摘要(中) 本研究開發一種「單拍偏振干涉之表面形貌量測技術」,能精準量測待測物之表面形貌,並改善現有半導體表面形貌量測所遇到的瓶頸:系統架構複雜與量測範圍受限。本技術是基於待測物之反射光與參考面之反射光所形成偏振干涉現象進行表面形貌量測,無需額外壓電調制器的輔助即可完成量測。當偏振干涉現象發生時,兩道反射光之偏振態相互正交,干涉圖像之相位變化由形貌資訊產生。透過本研究提出之偏振干涉解相法,我們能求得待測物之相位差分布,並運用形貌量測方程式,即可計算出相應的表面形貌分布。
本研究量測系統結合「偏振相機」與「偏振干涉術」形成一個非共光程之量測系統,不僅能有效減少架構之複雜度,還能同時擷取四個不同偏振方向之光強度訊號。本量測系統中,藉由半反射鏡與聚合物相位差膜之光學特性,使兩道光束反射後投射在成像系統上,並形成四個相互正交之偏振干涉圖像。相較於移相干涉之形貌量測技術,本系統量測形貌過程中無需相位調制器,或是壓電調制器等改變干涉圖像之相位差,僅需擷取一張干涉圖像,即可計算出待測物之表面形貌分布,適合應用於量測連續曲面或是所有反射之拋光材料之表面形貌。
在量測實驗中,不同平整度之平面鏡、碳化矽晶圓試片皆使用本研究所開發之量測技術成功量測出表面形貌分布,並改變晶圓相應位置與傾斜晶圓角度來驗證此技術能量測到晶圓形貌。本量測技術之系統解析度可達11.12 nm,最大檢測範圍可達直徑60 mm。
摘要(英) This study presents a "Single-shot Polarization Interferometric Surface Profilometry Technique" that enables precise measurement of the surface topography of a test object. It addresses the limitations encountered in existing semiconductor surface profilometry, such as complex system architecture and restricted measurement range. The proposed technique leverages the polarization interference phenomenon between the reflected light from the test object and a reference surface to perform surface profilometry, eliminating the need for additional electro-optic modulators. When polarization interference occurs, the polarization states of the two reflected beams become orthogonal, and the phase variation in the interference image encodes the topographical information. Through the introduced polarization interference phase-unwrapping algorithm, the phase distribution of the test object can be determined, and by utilizing the surface profilometry equation, the corresponding surface topography can be calculated.
The measurement system developed in this study combines "polarization interference" with a "polarization camera," creating a non-common-path measurement system. This design not only enables the test object to generate interference images but also effectively reduces the complexity of the setup. Simultaneously, it captures the intensity signals from four different polarization directions. In this measurement system, the optical characteristics of the reflecting mirror and the polymer phase retarder are exploited to project the reflected beams onto the imaging system, forming four orthogonal polarization interference images. Compared to phase-shifting interferometry techniques, the proposed system performs surface profilometry without the need for phase modulators or devices that alter the phase difference of the interference images. It only requires the acquisition of a single interference image to calculate the surface topography of the test object, making it suitable for measuring the surface topography of continuously curved surfaces and polished materials with various reflective properties.
In the measurement experiments, the developed measurement technique successfully captured the surface topography distribution of different flat mirrors and silicon carbide wafer samples. The technique′s capability to measure wafer topography was verified by altering the wafer′s position and tilting angle. The system′s resolution was found to reach 11.12 nm, with a maximum detection range of a 60 mm diameter.
關鍵字(中) ★ 表面形貌
★ 相位展開
★ Fizeau干涉術
★ 偏振干涉解相法
★ 偏振相機
關鍵字(英) ★ Surface profile
★ Phase unwrapping
★ Fizeau interferometry
★ Polarization Interferometry
★ Polarization Camera
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 移相干涉儀 2
1-2-2 偏振干涉儀 6
1-3 研究動機、目的與方法 13
1-4 論文架構 14
第二章 實驗原理 15
2-1 干涉術 15
2-1-1 光學干涉原理 16
2-1-2 移相干涉術 18
2-1-3 偏振干涉術 20
2-2 偏振干涉術 24
2-2-1 偏振干涉解相術 24
2-2-2 模擬干涉條紋與重建形貌 29
2-2-3 模擬光強度校正 32
2-3 小結 40
第三章 系統架構 41
3-1 系統設計 41
3-1-1 光學系統架構 41
3-1-2 偏振相機 44
3-2量測訊號處理 45
3-2-1 系統架設 45
3-2-3 量測軟體說明 47
3-2-3 光強度校正量測 51
3-3 小結 57
第四章 實驗結果與討論 58
4-1 系統特性 58
4-1-1 相位差量測與表面形貌關係 58
4-1-2 重複性量測 59
4-2形貌量測驗證 60
4-2-1 晶圓形貌橫向旋轉量測 60
4-2-2 晶圓形貌縱向位移量測 66
4-2-3 晶圓形貌傾斜量測 69
4-3 小結 72
第五章 誤差分析 73
5-1 量測性能評估 73
5-2 系統誤差 75
5-2-1 雙光束之偏振方向正交誤差 75
5-2-2 偏振相機對位誤差 78
5-3 隨機誤差 80
5-3-1 電子雜訊與環境光源 80
5-3-2 環境擾動 80
5-4 小結 81
第六章 結論與未來展望 82
6-1 結論 82
6-2 未來展望 82
參考文獻 84
參考文獻 [1] Y. Wang, F. Xie, S. Ma, and L. Dong, “Review of surface profile measurement techniques based on optical interferometry,” Optics and Lasers in Engineering, 93, 164-170 (2017).
[2] C. L. Tien, K. C. Yu, T. Y. Tsai, C. S. Lin, and C. Y. Li, “Measurement of surface roughness of thin films by a hybrid interference microscope with different phase algorithms,” Applied Optics, 53, 213-219 (2014).
[3] T. Jo, K. Kim, S. Kim, and H. Pahk, “Thickness and surface measurement of transparent thin-film layers using white light scanning interferometry combined with reflectometry,” Journal of the Optical Society of Korea, 18, 236-243 (2014).
[4] X.W. Tan, and G.T. He, “Sinusoidal phase modulating interferometer for real-time surface profile measurement,” SPIE, 7283 (2009).
[5] L. L. Deck, “Model-based phase shifting interferometry,” Applied Optics, 53, 4628-4636 (2014).
[6] T. Guo, F. Li, J. Chen, X. Fu, and X. Hu, “Multi-wavelength phase-shifting interferometry for micro-structures measurement based on color image processing in white light interference,” Optics and Lasers in Engineering, 82, 41-47 (2016).
[7] Q. Liu, L. Li, H. Zhang, W. Huang, and X. Yue, “Simultaneous dual-wavelength phase-shifting interferometry for surface topography measurement,” Optics and Lasers in Engineering, 124, 105813 (2020).
[8] N.R. Sivakumar, B. Tan, and K. Venkatakrishnan, “Measurement of surface profile in vibrating environment with instantaneous phase shifting interferometry,” Optics, 257, 217-224 (2006).
[9] L. C. Chen, S. L. Yeh, A. M. Tapilouw, and J. C. Chang, “3-D surface profilometry using simultaneous phase-shifting interferometry,” Optics Communications, 283, 3376-3382 (2010).
[10] Y. Kim, K. Hibino, N. Sugita, and M. Mitsuishi, “Surface profile measurement of a highly reflective silicon wafer by phase-shifting interferometry,” Applied Optics, 54, 4207-4213 (2015).
[11] H. Bai, M. Shan, Z. Zhong, L. Guo, and Y. Zhang, “Parallel-quadrature on-axis phase-shifting common-path interferometer using a polarizing beam splitter,” Applied Optics, 54, 9513-9517 (2015).
[12] P. Yan, K. Wang, P. Cuia, J. Gao, J. Ma, and Q. Zhang, “Single-exposure polarization phase-shifting interferometer using an azo-polymer orientation array,” Optics and Lasers in Engineering, 73, 75-79 (2015).
[13] X. Tian, X. Tu, J. Zhang, O. Spires, N. Brock, S. Pau, and R. Liang, “Snapshot multi-wavelength interference microscope,” Optics Express, 26, 18279-18291 (2018).
[14] D. Wang, X. Fu, P. Xu, X. Tian, O. Spires, J. Liang, H. Wu, and R. Liang, “Compact snapshot dual-mode interferometric system for on-machine measurement,” Optics and Lasers in Engineering, 132, 106129 (2020).
[15] J. M. Islas-Islas, G. Reséndiz-López, J. G. Ortega-Mendoza, L. García-Lechuga, A. Quiroz, D. I. Serrano-García, B. C. Pacheco and N. I. Toto-Arellano, “Characterizations and Use of Recycled Optical Components for Polarizing Phase-Shifting Interferometry Applications,” In Photonics, 9, 125 (2022).
[16] P. Hariharan, “Optical interferometry,” Reports on Progress in Physics, 54, 339 (1991).
[17] A. Fresnel, “Mémoire sur la diffraction de la lumière,” 339-475 (1819).
[18] J. N. Liu, M. Gao, L. S. Zhang, and L. X. Zhang, “A laser interference/high-speed photography method for the study of triple phase contact-line movements and lateral rewetting flow during single bubble growth on a small hydrophilic heated surface,” International Communications in Heat and Mass Transfer, 100, 111-117 (2019).
[19] B. Maniscalco, P. M. Kaminski, and J. M. Walls, “Thin film thickness measurements using scanning white light interferometry,” Thin Solid Films, 550, 10–16 (2014).
[20] F.G. Smith, T.A. King, and D. Wilkins, “Optics and Photonics: An Introduction 2nd edn,” John Wiley & Sons, 7, 198– 203 (2007).
[21] Creath, Katherine, “Step height measurement using two-wavelength phase-shifting interferometry,” Applied Optics, 26, 2810-2816 (1987).
[22] K. Kinnstaetter, A. Lohmann, J. Schwider, and N. Streibl, “Accuracy of phase shifting interferometry,” Applied Optics, 27, 5082-5089 (1988).
[23] C. Zuo, S. Feng, L. Huang, T. Tao, W Yin, Q. Chen, “Phase shifting algorithms for fringe projection profilometry: A review,” Optics and Lasers in Engineering, 109, 23-59 (2018).
[24] J. Y. Lee, W. Y. Sung, C. T. Hsu, “Dynamic range enhancement of the roll angle displacement measurement with birefringence using a polarization camera,” Applied Optics, 60, 9110-9116 (2021).
[25] A. Nikitin, J. Sheldakova, A. Kudryashov, D. Denisov, V. Karasik, A. Sakharov, “Hartmannometer versus Fizeau Interferometer: advantages and drawbacks,” Photonic Instrumentation Engineering II, 9369, 21-29 (2015).
[26] Piezoelectric actuator (Piezopedia).
https://www.piezosystem.com/
[27] D. M. Roessler, F. L. Pedrotti and L. S. Pedrotti, “Introduction to Optics,” Applied Optics, 28, 2805 (1989).
[28] 光的偏振性質
http://ezphysics.nchu.edu.tw/ccp/optics/o5.htm
[29] Jones Calcualation
https://en.wikipedia.org/wiki/Jones_calculus
[30] J. Y. Lee, T. K. Chou, and H. C. Shih, “Polarization-interferometric surface-plasmon-resonance imaging system,” Optics Letters, 33, 434-436 (2008).
[31] J. Y. Lee, C. Y. Chiang, W. Y. Sung, T. Y. Weng, J. H. Chen, and C. C. Hsu, “Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry”, Applied Optics, 60, 106-112 (2021).
[32] T. Akiyama, K. Kawahata, S. Okajima, K. Nakayama, “Development of CO2 laser dispersion interferometer with photoelastic modulator,” Review of Scientific Instruments, 81, (2010).
[33] B. Maniscalco, P.M. Kaminski, J.M. Walls, “Thin film thickness measurements using scanning white light interferometry,” Thin Solid Films, 550, 10-16 (2014).
[34] J. Yang, C. Yunchul, D. Sprinzak, M. Heiblum, D. Mahalu and H. Shtrikman, “An electronic mach–zehnder interferometer,” Nature, 422, 415-418 (2003).
[35] M. Ikram, G. Hussain, “Michelson interferometer for precision angle measurement,” Applied Optics, 38, 113-120 (1999).
[36] K. Itoh, “Analysis of the phase unwrapping algorithm,” Applied Optics, 21, 2470-2470 (1982).
[37] D. G. Abdelsalam and D. Kim, “Two-wavelength in-line phase-shifting interferometry based on polarizing separation for accurate surface profiling,” Applied Optics, 50, 6153-6161 (2011).
[38] C. H. Hsieh, C. C. Tsai, H. C. Wei, L. P. Yu, J. S. Wu, and C. Chou, “Determination of retardation parameters of multiple-order wave plate using a phase-sensitive heterodyne ellipsometer,” Applied Optics, 46, 5944–5950 (2007).
[39] D. G. Abdelsalam, B. Yao, P. Gao, J. Min, and R. Guo, “Single-shot parallel four-step phase shifting using on-axis Fizeau interferometry,” Applied Optics, 51, 4891-4895 (2012).
[40] D. Malacara, “Optical Shop Testing,” John Wiley & Sons, 59 (2007).
[41] J. Y. Lee, Y. X. Wang, Z. Y Lin, C. R. Lin, and C. H. Chan, “Standing-wave interferometer based on single-layer SiO2 nano-sphere scattering,” Optics Express, 25, 26628-26637 (2017).
[42] 線性偏振片 (Edmund Optics).
https://www.edmundoptics.cn/f/linear-glass-polarizing-filters/11758/
[43] 透鏡 (Edmund Optics).
https://www.edmundoptics.com/f/condenser-lenses-731b9cef/12868/
[44] 半反射鏡 (Thorlabs).
https://www.thorlabs.com/thorproduct.cfm?partnumber=PF40-03-P01
[45] 四分之一波片 (Edmund Optics).
https://www.edmundoptics.cn/p/254mm-dia-5320nm-lambda4-quartz-waveplate-zero-order/5201/
[46] Edmund:聚合物相位差膜。2023年,取自:https://www.edmundoptics.com.tw/f/polymer-retarder-film/14827/
[47] 偏振相機。2023年,取自:
https://thinklucid.com/polarized-camera-resource-center/
[48] LabVIEW (National Instruments)
https://www.ni.com/getting-started/labview-basics/zht/environment
[49] Python
https://www.python.org/about/gettingstarted/
[50] R. J. Moffat, “Describing the uncertainties in experimental results,” Experimental Thermal and Fluid Science, 1, 3-17 (1988).
[51] C語言
https://zh.wikipedia.org/zh-tw/C%E8%AF%AD%E8%A8%80
[52] 科技部整合型專題研究計畫,「具人工智能安全與檢測感知能力之高功能基板精密複合加工系統研發」,國立中央大學機械工程學系(計畫編號:111-2218-E-008-006-MY2)。
指導教授 李朱育(Ju-Yi Lee) 審核日期 2023-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明