博碩士論文 109323115 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.116.90.141
姓名 舒慶哲(Su, Ching-Che)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電解式混氣電化學噴射微加工之研究
(Research on Electrolytic Mixed Gas Electrochemical Jet Micro Machining)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 眾所周知於電化學混氣噴射加工法混入適當的氣泡量,可以使加
工中電解液與材料的接觸面積減小,相對單位面積電流密度提高,具
有特徵孔徑減小與表面粗糙度下降等優勢,能有效提高特徵精度與提
升表面品質。本論文採用新式電解混氣噴射電化學加工技術,其在電
解液流入噴嘴前,先經過電解產氣模組進行電解氣體混合生成處理,
在氣泡與電解液均勻混合後由微電極噴嘴射出,使混有氫氣與氧氣之
電解液噴射於不銹鋼工件表面,並施以電解電壓而加工製作出特徵微
結構。於研究過程中探討不同電解噴射加工參數與不同電解混氣比例
對加工特徵之影響。
在電解式混氣加工製程中,可控制電流而達到精確控制氣泡之尺
寸與混氣之比例,使加工中流場穩定,不會因混氣氣泡尺寸過大造成
氣泡堆積堵塞於流道內。且加工中控制氣泡比例可避免氣泡過多造成
電導率不足、材料移除率減少、流場混亂、表面粗糙度上升等問題。
實驗中所使用電解式混氣氣泡尺寸範圍控制在 7~13 μm,混氣比例則
是控制在 0.01~0.07 %之間。實驗結果發現,在高電流密度下,電解液
混氣後能夠使總體電流密度減少得而到較好的表面粗糙度且提高了加
工精度。且從實驗結果得知混氣電流與加工特徵直徑、深度、材料移
除量成反比,在本研究設定範圍內混氣電流值越大則上述之特徵值越
小。對於表面形貌而言,在加工電壓為 200 V、電解液濃度 12 wt.%、
加工間隙 450 μm、混氣電流 0.2 A、加工時間為 2 秒時,與未混氣加
工特徵相比,具有較佳的表面粗糙度。
摘要(英) It is well known that by incorporating an appropriate amount of bubbles in
the mixed gas electrochemical jet processing method, the contact area between
the electrolyte and the material during processing can be reduced. This leads to
an increase in the current density per unit area, resulting in advantages such as
reduced characteristic size and decreased surface roughness of machined micro
concave. This technique effectively improves feature accuracy and enhances
surface quality. In this study, a novel mixed gas electrochemical jet processing
technique was adopted. Prior to entering the nozzle, the electrolyte undergoes
electrolytic gas mixing and generation treatment in an electrolytic gas
generation module. After uniform mixing of bubbles and electrolyte, the
mixture is ejected onto the surface of the stainless steel workpiece through a
microelectrode nozzle. By applying an electrolytic voltage, characteristic
microstructures are fabricated. The study investigates the influence of different
electrochemical jet processing parameters and various electrolyte gas mixing
ratios on the processed features.
In the electrolytic gas-liquid mixing machining process, the bubble size and
gas-to-liquid ratio can be precisely controlled by manipulating the current. This
ensures a stable flow field during processing, preventing blockages in the flow
channel due to excessively large gas bubbles. Moreover, controlling the bubble
ratio during processing prevents issues such as insufficient conductivity,
reduced material removal rate, turbulent flow field, and increased surface
roughness caused by an excessive number of bubbles.
In this study, the size of the electrolytic gas bubbles was maintained within
the range of 7 to 13 μm, while the gas-to-liquid ratio was controlled between
III
0.01% and 0.07%. The experimental results revealed that under high current
density, mixing the electrolyte gas reduced the overall current density and led
to improved surface roughness and machining accuracy. Additionally, the
experimental results indicated an inverse relationship between the mixing
current and machining characteristics such as diameter, depth, and material
removal rate. Within the set range of mixing current values in this study, larger
mixing currents corresponded to smaller values of these machining
characteristics.
Regarding surface morphology, at a processing voltage of 200 V, electrolyte
concentration of 12 wt.%, processing gap of 450 μm, mixing current of 0.2 A,
and a processing time of 2 seconds, the surface exhibited better roughness when
compared to characteristics from non-mixed processing.
關鍵字(中) ★ 電化學噴射加工
★ 電解式混氣模組
★ 微槽特徵
關鍵字(英) ★ Electrochemical jet processing
★ Electrolytic mixed gas module
★ Micro concave
論文目次 目 錄
摘 要.........................................................I
ABSTRACT......................................................II
誌 謝........................................................IV
目 錄.........................................................V
圖目錄.......................................................VII
表目錄.........................................................X
第一章 緒論....................................................1
1-1 研究背景 ...............................................1
1-2 研究動機及目的 .........................................2
1-3 文獻回顧 ...............................................3
1-4 論文架構 ...............................................6
第二章 實驗基礎理論............................................7
2-1 電化學加工的基礎理論 ...................................7
2-1-1 法拉第定律 ........................................8
2-1-2 歐姆定律 ..........................................8
2-2 電化學噴射加工的基礎理論[18,19] ........................9
2-3 混氣電化學噴射加工的基礎理論 ..........................10
2-3-1 電解式混氣原理[16] ...............................10
2-3-2 混氣電解液之作用 .................................11
第三章 實驗設備與材料.........................................12
3-1 實驗方法 ..............................................12
3-2 基礎實驗相關設備 ......................................13
3-3 實驗材料 ..............................................21
3-4 實驗流程與方法 ........................................23
VI
第四章 加工模擬...............................................27
4-1 模型描述 ..............................................27
4-2 流場 ..................................................28
4-3 電場 ..................................................30
4-4 變形幾何 ..............................................32
5-1 不同參數對氣泡狀態之影響 ..............................33
5-1-1 不同孔徑噴嘴之氣泡流場觀察 .......................33
5-1-2 不同噴射方向之氣泡流場觀察 .......................35
5-1-3 不同混氣電流之氣泡流場觀察 .......................36
5-2 不同參數下對微槽特徵之影響 ............................39
5-2-1 加工電壓之影響[20] ...............................39
5-2-2 加工時間之影響 ...................................48
5-2-3 加工間隙之影響 ...................................52
5-2-4 電解液濃度之影響 .................................56
5-2-5 進給速度對溝槽加工之影響 .........................60
5-3 模擬結果 ..............................................63
第六章 結論...................................................65
未來展望......................................................66
參考文獻......................................................67
參考文獻 [1] M. Sen, H.S. Shan, “Analysis of hole quality characteristics in the electro jet
drilling process”, International Journal of Machine Tools & Manufacture, Vol.45,
pp. 1706–1716, 2005.
[2] W. Natsu, S. Ooshiro, M. Kunieda, “Research on generation of three-dimensional
surface with micro-electrolyte jet machining”, CIRP Journal of Manufacturing
Science and Technology, Vol.1, pp. 27–34, 2008.
[3] T. Kawanaka, S. Kato, M. Kunieda, “Selective surface texturing using electrolyte
jet machining”, Procedia CIRP, Vol.13, pp. 345–349, 2014.
[4] M. H-Oschatzchen, R. Paul, M. Kowalick, A. Marti, G. Meichsner, A. Schubert,
“Multiphysics Simulation of the Material Removal in Jet Electrochemical
Machining”, Procedia CIRP, Vol.31, pp. 197–202, 2015.
[5] T. Wienand, G. Meichsner, M. H-Oschatzchen, “Jet electrochemical machining
simulation of intersecting line removals with adjustable nozzle diameter by a
finite area element grid”, Procedia CIRP, Vol.102, pp. 349–354, 2021.
[6] J. Mitchell-Smith, A. Speidel, A.T. Clare, “Advancing electrochemical jet
methods through manipulation of the angle of address”, Journal of Materials
Processing Technology, Vol.255, pp. 364–372, 2018.
[7] L. Zhuang, N. Hooman, Jan K. Spelt, M. Papini, “Electrochemical slurry jet
micro-machining of tungsten carbide with a sodium chloride solution”, Precision
Engineering, Vol.13, pp. 345–349, 2015.
[8] L. Zhuang, G. Changshui, G. Chao, Q. Yi, “Simulation and experiments of
abrasive assisted electrochemical jet machining of SiC reinforced auminum
matrix composites”, Procedia CIRP, Vol.95, pp. 706–765, 2020.
[9] T. Kawanaka, M. Kunieda, “Mirror-like finishing by electrolyte jet
machining”, CIRP Annals - Manufacturing Technology, Vol.64, pp. 237–240,
2015.
[10]J. Mitchell-Smith, A.T. Clare, “ElectroChemical Jet Machining of Titanium:
Overcoming Passivation Layers with Ultrasonic Assistance”, Procedia
CIRP, Vol.42, pp. 379–383, 2016.
[11]S. Mahata, S. Kunar, B. Bhattacharyya, “Fabrication of Island-Free Micro Dimple
Arrays by Through Mask Electrochemical Micromachining”, Meso. Micro and
Nano Engineering, 600 036 INDIA, 2017.
[12]M.H. Wang, W.J. Tong, G.Z. Qiu, X.F. Xu, A. Speidel, J. Mitchell-Smith,
“Multiphysics study in air-shielding electrochemical micromachining”, Journal of
Manufacturing Processes, Vol.43, pp. 124–135, 2019.
[13]Q. Jing, P. Li, Y. Zhang, J. Li, F. Ji, “Micro Machining by Wire-Preposed Jet
Electrochemical Machining”, Procedia CIRP, Vol.95, pp. 809–814, 2020.
[14]J. C. Hung, J. H. Liu, Z. W. Fan, “Fabrication of microscale concave and grooves
through mixed-gas electrochemical jet machining”, Precision
Engineering, Vol.55, pp. 310–321, 2019.
[15]M. Hackert, G. Meichsner, A. Schubert, “Simulation of the Shape of Micro
Geometries generated with Jet Electrochemical Machining”, Excerpt from the
Proceedings of the COMSOL Conference, 2008.
[16]黃 柏 升,電解水產氫效率之參數分析,碩士論文,2008。
[17]M. H.-Oschätzchen, A. Martina , G. Meichsner, M. Kowalick, H. Zeidler, A.
Schubert, “Inverse jet electrochemical machining for functional edge shaping of
micro bores”, Procedia CIRP , Vol.6, pp. 378–383, 2013.
[18]J. Mitchell-Smith, A. Speidel, A.T. Clare, “Transitory electrochemical masking
for precision jet processing techniques”, Journal of Manufacturing Processes,
Vol.31, pp. 273–285, 2018.
[19]J.C. Walker, S. Cinti, T.J. Kamps, J. Mitchell-Smith, A.T. Clare, “Influence of
contact area on the sliding friction and wear behaviour of an electrochemical jet
textured Al-Si alloy”, Wear, Vol.426-427, pp. 1336–1344, 2019.
[20]T. Kendall, P. Bartolo, D. Gillen, C. Diver, “A review of physical experimental
research in jet electrochemical machining”, The International Journal of
Advanced Manufacturing Technology, Vol.105, pp. 651–667, 2019.
[21]Z. Xinmin, S. Xudong, M. Pingmei, L. Xinchao,Z. Yongbin, C. Jintao, “The
Effect of Electrolytic Jet Orientation on Machining Characteristics in Jet
Electrochemical Machining”, Micromachines, Vol.10, 404, 2019.
[22]L. Weidong, K. Masanori, L. Zhen, “Three-dimensional simulation and
experimental investigation of electrolyte jet machining with the inclined
nozzle”, Journal of Materials Processing Tech, Vol.297, pp. 117–144, 2021.
指導教授 洪 榮 洲(Hung, Jung-Chou) 審核日期 2023-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明