博碩士論文 108684001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.219.189.247
姓名 廖中翊(Zhong-Yi Liao)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 考慮具複雜降解反應途徑與時變函數污染源之三維多污染物傳輸解析解模式
(Analytical models of three-dimensional multiple contaminant transport with complex reaction pathways subject to time-dependent source boundary conditions)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 含氯有機化合物與放射性核種等物質造成的地下水污染問題,為現今非常重要的水資源議題,這些釋放到地底下的污染物常會造成環境與健康的危害,因此了解污染物在地下含水層水中的傳輸與遷移是非常重要的。此污染與傳輸的過程常會包括複雜的機制與情境。在場址中,污染的初始濃度常會因污染源質量的消耗或整治而隨時間而改變。此外,降解反應的過程常會是具複雜的分岐反應途徑,像是三氯乙烯就有可能同時產生三個不同二氯乙烯異構物。這些複雜的情況與反應機制都將造成模擬預測及整治評估的工作更加艱鉅。以移流-延散方程式為主的多污染物傳輸解析解已被廣泛用來描述這些具降解性污染物與其產物在地底下環境中的傳輸移動。然而,過去所發展的多污染物傳輸解析解模式大都假設入流邊界污染源的濃度為定濃度的釋放,且所考慮的降解反應過程常簡化為直鏈的降解反應,也就是無法考慮具複雜的發散或收斂反應途徑所產生的異構物與其不同的物化特性。本研究主要就是發展全新的三維地下水多污染物傳輸解析解模式。此發展的新解析解可同時考慮不同隨時間變化的污染源函數與複雜的降解反應途徑,將可更真實的描述場址中污染傳輸的過程。透過系統中所建立的控制方程式與對應不同時間函數的邊界條件,經由連續三個積分轉換及逆轉換來求得全解析解。接著藉由數值解與存在相關的半解析解模式,來驗證所推導的解析解與所撰寫的FORTRAN程式計算的正確性。此發展的模式將會用於評估過去模式的適用性,接著分別探討不同時變函數與降解反應途徑對於污染團遷移的影響,並進一步用於污染場址參數的推估、未來污染團的預測以及評估健康風險的危害。
在未來,可藉由所發展模式高運算效率的優勢,結合蒙地卡羅模擬以隨機產生多組的輸入參數,發展成機率式模擬的預測軟體,對於場址中參數常具不確定性下的模擬預測與整治評估更具實用性。另外也可將所發展的最新解析解模式進一步與圖形使用者介面結合,不僅能供產業人員更方便的應用於場址的整治及健康風險的評估,且可大大提升模式之附加價值,期望能成為廣為使用的軟體。
摘要(英) The groundwater contaminated by chlorinated organic compounds or radionuclides is a problematic water-resource issue worldwide. The release of these contaminants into the groundwater cause a major threat to the environment and our human health, and thus it is needed to understand the existing contaminants and their transport into the groundwater system. These contamination and transport processes include complex mechanisms and many different scenarios. The initial concentration of contaminants in the subsurface may change with time due to the remediation or depletion of the source zone. Moreover, the process of degradation of the contaminants also follows a complex reaction pathway, as the trichloroethylene may react and become three dichloroethylene isomers. These complex conditions and processes cause challenges for simulating and assessing the remediation of contaminated sites. Analytical solutions to multispecies transport based on advective-dispersive transport equations have been widely used for simulating the movement of the originally released parent contaminant and its degradation byproduct in the subsurface environment. In most previous studies, the multispecies transport analytical models in previous study have often been simplified for only a constant source concentration and a straight decay chain, neglecting the divergent and convergent reaction pathways, including the individual properties of the isomers. This study is aimed to obtain newly analytical solutions that can simulate the multi-dimensional reactive transport of multiple contaminants in the subsurface. These newly derived analytical solutions can consider the complex reaction pathways associated with different types of time-dependent source functions to give a more realistic description of reactive transport at contaminated sites. Three integral transformation techniques are used to derive the exact analytical solutions to the governing equations system subject to different time-dependent inlet source functions. The computer code is developed in the FORTRAN language and the accuracy of the derived analytical solutions is examined for several cases using numerical solutions and existing semi-analytical model. The developed models are then used to assess the performance of previously developed models and also to investigate how the source functions and complex reaction pathways affect to the transport behavior of multiple contaminants in soil-water systems. The developed analytical models are also used to provide parameter estimations, future plume migration prediction, and health risk assessment at real sites.
The high computational efficiency of the developed models makes them suitable for generating stochastic parameters and executing a large number of simulations by using the Monte Carlo technique for future applications at contaminated sites which have parameters with high degrees of uncertainty. Moreover, the developed model can also be used to design a user friendly graphical user interface (GUI), which coupled with the transport and risk assessment models will make it easier to simulate remediation and assessment at contaminated sites. This can greatly enhance the added value of the model, hopefully making it a popular software tool for this purpose.
關鍵字(中) ★ 解析解
★ 多污染物傳輸
★ 時變的污染源函數
★ 複雜反應途徑
★ 健康風險
關鍵字(英) ★ analytical solutions
★ multispecies transport
★ time-dependent source functions
★ complex reaction pathway
★ health risk
論文目次 ABSTRACT i
中文摘要 iii
誌謝 v
TABLE OF CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xv
NOTATIONS xviii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature review 7
1.3 Objectives 12
Chapter 2 Methodology 13
2.1 Mathematical model 13
2.2 Derivation of the exact analytical solutions 18
Chapter 3 Results and discussion 23
3.1 Verification of the analytical solutions 23
3.1.1 Three-dimensional radionuclide transport with an exponentially decaying source concentration 24
3.1.2 Three-dimensional chlorinated solvent transport with piecewise constant source concentration 28
3.1.3 One-dimensional solute transport with a divergent reaction pathway 33
3.1.4 Three-dimensional contaminant transport with a complex reaction pathway 39
3.2 Computational efficiency of the models 45
3.3 Investigation of plume migration of chlorinated solvents 49
3.4 Model with a complex reaction chain versus model with a straight reaction chain 55
3.5 Application of a piecewise constant source function 61
3.6 Sensitivity analysis of multiple contaminant transport parameters 67
3.7 Application of the developed analytical models to real contaminated sites 72
3.7.1 Case study 1: Source zone determination 75
3.7.2 Case study 2: Modeling of multiple contaminants at a site with source remediation 83
Chapter 4 Conclusions and suggestion 103
4.1 Conclusions 103
4.2 Suggestion 104
References 106
Appendix A. Analytical solutions for a constant source concentration 114
Appendix B. Analytical solutions for an exponentially decaying
source function 119
Appendix C. Analytical solutions for a piecewise constant
source function 125
Appendix D. Parameters used from the previous studies 127
MUST軟體使用者手冊 Software user manual 129
Curriculum vitae 186
參考文獻 Aziz, C.E., Newell, C.J., Gonzales, J.R., Hass P., Clement, T.P., Sun, Y., 2000. BIOCHLOR-Natural attenuation decision support system v1.0, User’s Manual. US EPA Report, EPA 600/R-00/008.
Ajo-Franklin, J.B., Geller, J.T., Harris, J.M., 2006. A survey of the geophysical properties of chlorinated DNAPLs. J Appl Geophys 59, 177–189.
Amirabdollahian, M., Datta, B., 2013. Identification of contaminant source characteristics and monitoring network design in groundwater aquifers: an overview. J. of Environmental Protection, 4, 26-41.
Batu, V., van Genuchten, M.T., 1990. First and third-type boundary conditions in two-dimensional solute transport modeling. Water Resour. Res. 26, 339–350 http://dx.doi.org/10.1029/WR026i002p00339.
Bauer, P., Attinger, S., Kinzelbach, W., 2001. Transport of a decay chain in homogeneous porous media: analytical solutions. J. Contam. Hydrol. 49, 217–239 https://doi.org/10.1016/S0169-7722(00)00195-9.
Bedient, P.B., Rifai, H.S., Newell, C.J., 1999. Ground water contamination: Transport and remediation. Second edition.
Benekos, I.D., Shoemaker, C.A., Stedinger, J.R., 2007. Probabilistic risk and uncertainty analysis for bioremediation of four chlorinated ethenes in groundwater. Stoch Environ Res Risk Assess. 21, 375–390. https://doi.org/10.1007/s00477-006-0071-4.
Chen, J.S., Chen, J.T., Liu, C.W., Liang, C.P., Lin, C.M., 2011. Analytical solutions to two-dimensional advection-dispersion equation in cylindrical coordinates in finite domain subject to first and third-type inlet boundary conditions. J. Hydrol. 405, 522–531 http://dx.doi.org/10.1016/j.jhydrol.2011.06.002.
Chen, J.S., Lai, K.H., Liu, C.W., Ni, C.F., 2012a. A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions. J. Hydrol. 420–421, 191–204 http://dx.doi.org/10. 1016/j.jhydrol.2011.12.001.
Chen, J.S., Liu, C.W., Liang, C.P., Lai, K.H., 2012b. Generalized analytical solutions to sequentially coupled multispecies advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition. J. Hydrol. 456–457, 101–109 http://dx.doi.org/10.1016/j.jhydrol.2012.06.017.
Chen, J.S., Liang, C.P., Liu, C.W., Li, L.Y., 2016. An analytical model for simulating two-dimensional multispecies plume migration. Hydrol. Earth Sys. Sci. 20, 733–753 http://dx.doi.org/10.5194/hess-20-733-2016.
Chen J.S., Ho Y.C., Liang C.P., Wang S.W., Liu C.W., 2019a. Semi-analytical model for coupled multispecies advective-dispersive transport subject to rate-limited sorption. J. Hydrol. 579, 124–164 https://doi.org/10.1016/j.jhydrol.2019.124164.
Chen, J.S., Liang, C.P., Chang, C.H., Wan, M.H., 2019b. Simulating three-dimensional plume migration of a radionuclide decay chain through groundwater. Energies. 12, 37–40 https://doi.org/10.3390/en12193740.
Cho, C. M., 1971. Convective transport of ammonium with nitrification in soil. Can. J. Soil Sci. 51, 339–350 https://doi.org/10.4141/cjss71-047.
Domenico, P.A., 1987. An analytical model for multidimensional transport of a decaying contaminant species. J. Hydrol. 91, 49–58. https://doi.org/10.1016/0022-1694(87)90127.
Wang, X., Neville, C.J., 2016. User’s guide for DECAY. https://usermanual.wiki/Document/Decay20Users20Guide.897491709.pdf.
Environmental Protection Administration Executive Yuan, R.O.C (Taiwan) - Soil and Groundwater pollution remediation funds. https://sgw.epa.gov.tw/ContaminatedSitesMap/Default.aspx.
Fetter, C.W., Boving, T., Kreamer, D., 2017. Contaminant Hydrogeology, 3rd Edition.
Falta, R.W., Stacy, M.B., Ahsanuzzaman, W.M., Earle, R.C., 2007. Remediation Evaluation Model for Chlorinated Solvents (REMChlor), EPA/600/C-08/001.
Falta, R.W., Stacy, M.B., Ahsanuzzaman, W.M., Earle, R.C., 2007. Remediation Evaluation Model for Chlorinated Solvents (REMChlor), EPA/600/C-08/001.
Funk, S.P., Hnatyshin, D., Alessi, D.S., 2017. HYDROSCAPE: A new versatile software program for evaluating contaminant transport in groundwater. SoftwareX 6:261–266. https://doi.org/10.1016/j.softx.2017.10.001.
Guleria, A., Chakma, S., 2021. Fate and contaminant transport model-driven probabilistic human health risk assessment of DNAPL-contaminated site. Environmental science and pollution research international, 28 (12), 14358–14371. https://doi.org/10.1007/s11356-020-11635-w.
Hwang, H.T., Jeen, S.W., Sudicky, E.A., Illman, W.A., 2015. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model. J. Contam. Hydrol. 177-188, 43-53 https://doi.org/10.1016/j.jconhyd.2015.03.001.
Henri, C.V., Fernàndez-Garcia, D., de Barros, F.P.J., 2015. Probabilistic human health risk assessment of degradation-related chemical mixtures in heterogeneous aquifers: Risk statistics, hot spots, and preferential channels. Water Resources Research, 51 (6), 4086–4108. https://doi.org/10.1002/2014WR016717.
Integrated Risk Information System. https://www.epa.gov/iris
Kueper, B.H.(eds.). 2014. Chlorinated Solvent Source Zone Remediation.
Leij, F.J., Skaggs, T.H., van Genuchten, M.T., 1991. Analytical solution for solute transport in three-dimensional semi-infinite porous media. Water Resour. Res. 27 (10), 2719–2733 https://doi.org/10.1029/91WR01912.
Lemke, L., Bahrou, A., 2009. Partitioned multiobjective risk modeling of carcinogenic compounds in groundwater. Stoch. Environ. Res. Risk Assess. 23, 27–39 http://dx.doi.org/10.1007/s00477-007-0192-4.
Lee, L.J., Chan, C.C., Chung, C.W., Ma, Y.C., Wang, G.S., Wang, J.D., 2002. Health risk assessment on residents exposed to chlorinated hydrocarbons contaminated in groundwater of a hazardous waste site. Journal of toxicology and environmental health. Part A, 65(3-4), 219–235. https://doi.org/10.1080/15287390252800828.
Liao, Z.Y., Suk, H., Liu, C.W., Liang, C.P., Chen, J.S., 2021, Exact analytical solutions with great computational efficiency to three-dimensional multispecies advection-dispersion equations coupled with a sequential first-order degradation reaction network, Advances in Water Resources. 155, 104018.
Lu, X., Sun, Y., Petersen, J.N., 2003. Analytical solutions of TCE transport with convergent reactions. Transp. Porous Media. 51, 211-225. https://doi.org/10.1023/A:1021989618661.
Lu, C., Bjerg, P.L., Zhang, F., Broholm, M.M., 2011. Sorption of chlorinated solvents and degradation products on natural clayey tills. Chemosphere 83, 1467-1474. https://doi.org/10.1016/j.chemosphere.2011.03.007.
Mieles, J., Zhan, H., 2012. Analytical solutions of one-dimensional multispecies reactive transport in a permeable reactive barrier-aquifer system. J. Contam. Hydrol. 134–135, 54–68 http://dx.doi.org/10.1016/j.jconhyd.2012.04.002. .
McGuire, T.M., Newell, C.J., Looney, B.B., Vangelas, K.M., Sink, C.H., 2004. Historical analysis of monitored natural attenuation: A survey of 191 chlorinated solvent sites and 45 solvent plumes. Remediation 15, 99–112 https://doi.org/10.1002/rem.20036.
Morrison, R.D., Murphy, B.L., 2013. Chorinated solvents: A Forensic Evaluation. Royal Society of Chemistry.
Newell, C.J., R.K. McLeod, and J.R. Gonzales. 1996. BIOSCREEN Natural Attenuation Decision Support System User’s Manual Version 1.3, USEPA/600/R-96/087. Washington, DC: U.S. USEPA National Risk Management Research Laboratory.
Park, E., Zhan, H., 2001. Analytical solutions of contaminant transport from finite one-, two, three-dimensional sources in a finite-thickness aquifer. J. Contam. Hydrol. 53, 41–61 https://doi.org/10.1016/S0169-7722(01)00136-X.
Panagos, P., Van Liedekerke, M., Yigini, Y., Montanarella, L., 2013. Contaminated sites in Europe: review of the current situation based on data collected through a European network. J. Environ. Public Health https://doi.org/10.1155/2013/158764.
Pérez Guerrero, J.S., Skaggs, T.H., van Genuchten, M.T., 2009. Analytical solution for multi-species contaminant transport subject to sequential first-order decay reactions in finite media. Transport Porous Med. 80, 373–387 http://dx.doi.org/10.1007/s11242-009-9368-3.
Pérez Guerrero, J.S., Skaggs, T.H., 2010. Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients. J. Hydrol. 390, 57–65 http://dx.doi.org/10.1016/j.jhydrol.2010.06.030.
Promma, K., 2010. Approximate solution to simulate dissolved contaminant transport in groundwater from prism source. J. Hydrol. 389, 381–389 https://doi.org/10.1016/j.jhydrol.2010.06.021.
Paladino, O., Moranda, A., Massabò, M., Robbins, G.A., 2018. Analytical solutions of three-dimensional contaminant transport models with exponential source decay. Ground Water. 56 (1): 96–108. https://doi.org/10.1111/gwat.12564.
Pivetz, B., Keeley, A., Weber, E., Weaver, J., Wilson, J., Ma, C., 2014. Ground Water Issue Paper: Synthesis Report on State of Understanding of Chlorinated Solvent Transformation. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-13/237.
Srinivasan, V., Clement, T.P., Lee, K.K., 2007. Domenico solution-Is it valid ? Ground Water. 45(2), 136-146 https://doi.org/10.1111/j.1745-6584.2006.00281.x.
Srinivasan, V., Clememt, T.P., 2008a. Analytical solutions for sequentially coupled one-dimensional reactive transport problems -Part I: Mathematical derivations. Adv. Water Resour. 31, 203–218 http://dx.doi.org/10.1016/j.advwatres.2007.08.002.
Srinivasan, V., Clememt, T.P., 2008b. Analytical solutions for sequentially coupled one-dimensional reactive transport problems -Part II: Special cases, implementation and testing. Adv. Water Resour. 31, 219–232 http://dx.doi.org/10.1016/j.advwatres.2007.08.001.
Stroo, H.F., Ward, C.H., 2010. In Situ remediation of chlorinated solvents.
Sudicky, E.A., Hwang, H.T., Illman, W.A., Wu, Y.S., 2013. A semi-analytical solution for simulating contaminant transport subject to chain-decay reactions. J. Contam. Hydrol. 144, 20–45 http://dx.doi.org/10.1016/j.jconhyd.2012.10.001.
Suk, H., 2013. Developing semi analytical solutions for multispecies transport coupled with a sequential first-order reaction network under variable flow velocities and dispersion coefficients. Water Resour. Res. 49, 3044–3048 http://dx.doi.org/10.1002/wrcr.20230.
Suk, H., 2016. Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients. Adv. Water Resour. 94, 412–423 http://dx.doi.org/10.1016/j.advwatres.2016.06.004.
Sun, Y., Clement, T.P., 1999. A decomposition method for solving coupled multi-species reactive transport problems. Trans. Porous. Med. 37, 327–346 http://dx.doi.org/10.1023/A:1006507514019.
Sun, Y., Lu, X., Petersen, J.N., Buscheck, T.A., 2004. An analytical solution of Tetrachloroethylene transport and biodegradation. Transp. Porous Media. 55, 301-308 https://doi.org/10.1023/B:TIPM.0000013327.32136.52.
Suk, H., Zheng, K.W., Liao, Z.Y., Liang, C.P., Wang, S.W., Chen, J.S., 2022. A New Analytical Model for Transport of Multiple Contaminants Considering Remediation of Both NAPL Source and Downgradient Contaminant Plume in Groundwater. Advances in Water Resources, 167, 104290. https://doi.org/10.1016/j.advwatres.2022.104290
Sheng, D., Wen, X., Wu, J., 2021. Comprehensive Probabilistic Health Risk Assessment for Exposure to Arsenic and Cadmium in Groundwater. Environmental Management 67, 779–792. https://doi.org/10.1007/s00267-021-01431-8.
Tobiszewski, M., Namieśnik, J., 2012. Abiotic degradation of chlorinated ethanes and ethenes in water. Environ Sci Pollut Res. 19, 1994–2006. https://doi.org/10.1007/s11356-012-0764-9.
U.S. EPA. https://www.epa.gov/iris.
U.S. EPA, 1992. http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=12188
van Genuchten, M.T., Alves, W.J., 1982. Analytical solutions of the one-dimensional convective-dispersive solute transport equation. US Department of Agriculture Technical Bulletin No. 1661, pp. 151.
van Genuchten, M.T., 1985. Convective-dispersive transport of solutes involved in sequential first-order decay reactions. Comput. Geosci. 11, 129–147 http://dx.doi.org/10.1016/0098–3004(85)90003-2.
Wang, X., Neville, C.J., 2019. A semi-analytical solution for the transport of solutes with complex sequences of first-order reactions. Comput. Geosci. 123, 121-136 https://doi.org/10.1016/j.cageo.2018.11.013.
West, M.R., Kueper, B.H., Ungs, M.J., 2007. On the use and error of approximation in the Domenico solution. Ground Water. 45(2), 126–135 http://dx.doi.org/10.1111/j.1745-6584.2006.00280.x.
Yan, Y.E., Schwarz, F.W., 1999. Oxidative degradation and kinetics of chlorinatedethylenes by potassium permanganate. J Contam Hydrol 37, 343–365. https://doi.org/10.1016/S0169-7722(98)00166-1.
Zheng, C., Bennett, G.D., 2002. Applied Contaminant Transport Modeling, 2nd edition. John Wiley & Sons, Inc. New York, USA.
Zarlenga, A., de Barros, F.P.J., Fiori, A., 2016. Uncertainty quantification of adverse human health effects from continuously released contaminant sources in groundwater systems. J. Hydrol. 541, 850–861. https://doi.org/10.1016/j.jhydrol.2016.07.044.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明