博碩士論文 110552010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.144.96.170
姓名 程建銘(Chien-Ming Cheng)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 TPRAI教育機器人:一個兒童資訊學習互動夥伴
(TPRAI educational robot: an interactive partner for children’s information and learning)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-6-15以後開放)
摘要(中) 隨著STEM教育的日益普及,教育機器人在兒童學習STEM教育中扮演了重要的角色。本研究基於TPRAI教育目標,開發了一個TPRAI教育機器人系統,該教育機器人能夠透過遠端操控、影像辨識、語音對話的方式來與兒童學習者進行多模態互動。本研究採用了MIAT方法論來進行TPRAI教育機器人系統設計,我們將複雜的機器人系統功能分解成影音偵測、WIFI通訊、影音辨識、機器人控制等四個子系統模組,並進行每個子系統的離散事件建模和軟體高階合成,最後將合成的系統程式整合底層硬體周邊的驅動程式,完成機器人軟硬體整合。TPRAI教育機器人基於開源硬體、結合低成本的周邊元件,可以透過影像辨識與語音辨識功能,和學習者進行友善的多模態互動,可提供未來進一步開發計算思維、程式設計、AI等幼兒資訊教育應用。

關鍵詞: 教育機器人、STEM、計算思維、程式設計教育
摘要(英) With the increasing popularity of STEM education, educational robots play an important role in children′s learning in STEM education. Based on TPRAI educational objectives, this study developed a TPRAI educational robot system, which can interact with children learners in a multimodal manner through remote control, image recognition, and voice dialogue. In this study, we adopt MIAT methodology to design the TPRAI educational robot system. We decompose the complex robot system functions into four subsystem modules, such as audio and video detection, WIFI communication, audio and video recognition, and robot control, and conduct discrete event modeling and high-level software synthesis for each subsystem. Based on open source hardware and low-cost peripheral components, the TPRAI educational robot can interact with learners in a friendly multimodal manner through image recognition and voice recognition, and can provide further development of early childhood information education applications such as computational thinking, programming, and AI in the future.

Key words: educational robot, STEM, computational thinking, programming education
關鍵字(中) ★ 教育機器人
★ STEM
★ 計算思維
★ 程式設計教育
關鍵字(英) ★ STEM
★ Computational Thinking(CT)
★ Robot
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章、緒論 10
1.1 研究背景 10
1.2 研究目標 12
1.3 論文架構 12
第二章、OTTO開源機器人 13
2.1 OTTO機器人 13
2.1.1 OTTO DIY 13
2.1.2機械架構 15
2.2 OTTO機器人控制與通訊 15
2.2.1 OTTO機器人控制器 16
2.2.2馬達控制 17
2.2.3 擴充介面 18
2.3 智慧影音周邊 19
2.3.1影像識別模組(ESP32-CAM) 19
2.3.2 語音識別模組(LU-ASR01) 21
2.4 機器人軟體開發環境 22
2.4.1 Arduino開發環境 23
2.4.2 主控端網頁設計 24
2.4.3 物件偵測 24
2.4.4語音辨識 25
第三章、TPRAI教育機器人系統設計 27
3.1 TPRAI教育機器人硬體架構 27
3.1.1智慧影音元件 28
3.1.2訊號控制管理 28
3.1.3電源輸出 29
3.1.4致動元件 29
3.2 嵌入式軟硬體設計 29
3.2.1 MIAT系統設計方法論 29
3.2.2 IDEF0階層式、模組化設計 30
3.2.3 GRAFACET 離散事件建模 32
3.3 TPRAI教育機器人系統架構 33
3.3.1 影音感測模組 34
3.3.2 WIFI通訊模組 35
3.3.3影音辨識模組 36
3.3.4深度學習應用模組 36
3.3.5語音關鍵字辨識模組 37
3.3.6機器人控制模組 38
3.4 TPRAI教育機器人系統離散事件建模 39
3.4.1影音偵測模組離散事件建模 40
3.4.2 WIFI通訊模組離散事件建模 41
3.4.3影音辨識模組離散事件建模 43
3.4.4教育機器人系統物件偵測模組離散事件建模 44
3.4.5教育機器人系統關鍵字辨識模組離散事件建模 45
3.4.6 機器人控制模組離散事件建模 47
3.4.7 運動控制模組離散事件建模 48
第四章、TPRAI教育機器人系統軟硬體整合驗證 50
4.1教育機器人系統實驗環境與方法說明 50
4.1.1 系統軟硬體實驗環境 50
4.1.2 實驗方法和資料集 53
4.2影音感測功能驗證 54
4.2.1 系統驗證 54
4.3 WIFI通訊功能驗證 55
4.3.1 數據傳輸與網路連接 55
4.3.2 遠端控制與監視 55
4.4影音辨識功能驗證 56
4.4.1 視覺辨識功能驗證 56
4.4.2 語音辨識功能驗證 58
4.5機器人控制功能驗證 58
4.5.1 影像辨識指令接收功能驗證 58
4.5.2 語音辨識指令接收功能驗證 59
4.6資源消耗驗證 60
4.6.1 功耗計算驗證 60
4.6.2 價格比教驗證 60
4.7資訊學習應用 62
第五章、結論與未來展望 63
5.1結論 63
5.2未來展望 64
參考文獻 65
參考文獻 [1] F. B. V. Benitti, “Exploring the educational potential of robotics in schools: A systematic review,” Computers & Education, vol. 58, no. 3, pp. 978-988, 2012.
[2] J. M. Wing, “Computational thinking,” Communications of the ACM, vol. 49, no. 3, pp. 33-35, 2006.
[3] R. Israel-Fishelson, & A. Hershkovitz, “Studying interrelations of computational thinking and creativity: A scoping review (2011–2020),” Computers & Education, vol. 176, pp. 104353, 2022.
[4] S. Kucuk, & B. Sisman, “Students’ attitudes towards robotics and STEM: Differences based on gender and robotics experience,” International Journal of Child-Computer Interaction, vol. 23-24, pp. 100167, 2020.
[5] C. Wawan, K. Fenyvesi, A. Lathifah, & R. Ari, “Computational thinking development: Benefiting from educational robotics in STEM teaching,” European Journal of Educational Research, vol. 11, no. 4, pp. 1997-2012, 2022.
[6] L. Brancalião, J. Gonçalves, M. Á. Conde, & P. Costa, “Systematic mapping literature review of mobile robotics competitions,” Sensors, vol. 22, no. 6, pp. 2160, 2022.
[7] S. Chookaew, S. Howimanporn, & S. Hutamarn, “Investigating students’ computational thinking through STEM robot-based learning activities,” Advances in Science, Technology and Engineering Systems Journal, vol. 5, no. 1, pp. 1366-1371, 2020.
[8] A. Alam, "Educational Robotics and Computer Programming in Early Childhood Education: A Conceptual Framework for Assessing Elementary School Students’ Computational Thinking for Designing Powerful Educational Scenarios", 2022 International Conference on Smart Technologies and Systems for Next Generation Computing, Villupuram, India, 2022, pp. 1-7.
[9] M. U. Bers, F. L. lannery, E. R. Kazakoff, & A. Sullivan, “Computational thinking and tinkering: Exploration of an early childhood robotics curriculum,” Computers & Education, vol. 72, pp. 145-157, 2014.
[10] C. Chalmers, “Robotics and computational thinking in primary school,” International Journal of Child-Computer Interaction, vol. 17, pp. 93-100, 2018.
[11] G. Yin, “Intelligent framework for social robots based on artificial intelligence-driven mobile edge computing,” Computers & Electrical Engineering, vol. 96, pp. 107616, 2021.
[12] M. C. Hsieh, H. C. Pan, S. W. Hsieh, M. J. Hsu, & S. W. Chou, “Teaching the concept of computational thinking: a STEM-based program with tangible robots on project-based learning courses,” Frontiers in Psychology, vol. 12, pp. 828568, 2022.
[13] D. J. Lemay, R. B. Basnet, T. Doleck, P. Bazelais, & A. Saxena, “Instructional interventions for computational thinking: Examining the link between computational thinking and academic performance,” Computers and Education Open, vol. 2, pp. 100056, 2021.
[14] A. Valls-Pou, X. Canaleta, & D. Fonseca, “Computational Thinking and Educational Robotics Integrated into Project-Based Learning,” Sensors, vol. 12, no. 10, pp. 3746, 2022.
[15] C. Boya-Lara, D. Diaz-Solano, A. Fehrenbach and D. Saavedra, “A STEM Course for Computational Thinking Development with BEAM Robotics,” IEEE 40th Central America and Panama Convention (CONCAPAN), 2022, pp. 1-6.
[16] C. Parra-Palacio, T. Svarcova, E. Clime, Otto DIY, 2023 [Online]. Available: https://www.ottodiy.com
[17] M. Kalaitzidou, T. P. Pachidis, “Recent Robots in STEAM Education,” Education Sciences, vol. 13, no. 3, pp. 272, 2023.
[18] P. A. García-Tudela, & J. A. Marín-Marín, “Use of Arduino in Primary Education: A Systematic Review,” Education Sciences, vol. 13, no. 2, pp. 134, 2023.
[19] J. Gonzalez-Gomez, A.Valero-Gomez, A. Prieto-Moreno & M. Abderrahim, “A new open source 3d-printable mobile robotic platform for education,” Advances in Autonomous Mini Robots: Proceedings of the 6-th AMiRE Symposium, Bielefeld, Germany, 23-25 May 2011, pp. 49-62.
[20] C. Parra-Palacio, T. Svarcova, E. Clime, how Otto was born? And why is called Otto, 2017 [Online]. Available: https://www.ottodiy.com/blog/story
[21] C. Parra-Palacio, T. Svarcova, E. Clime, Otto Builder community, 2023 [Online]. Available: https://www.ottodiy.com/community
[22] C. Parra-Palacio, T. Svarcova, E. Clime, Otto’s Farm, 2021 [Online]. Available: https://www.ottodiy.com/games
[23] M. Banzi, & M. Shiloh, “Getting started with Arduino”, 4th ed., Maker Media, Inc.., 2022.
[24] A. S. Ismailov, & Z. B. Jo‘Rayev, “Study of arduino microcontroller board,” Science and Education, vol. 3, no. 3, pp. 172-179, 2022.
[25] M. A. Goodrich, & A. C. Schultz, “Human–robot interaction: a survey,” Foundations and Trends® in Human–Computer Interaction, vol. 1, no. 3, pp. 203-275, 2007.
[26] A. Paul, & R. Tiwari, “Smart Home Automation System Based on IoT using Chip Microcontroller,” In 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), IEEE, 2022, March, pp. 564-568.
[27] H. Dietz, D. Abney, P. Eberhart, N. Santini, W. Davis, E. Wilson & M. McKenzie, “ESP32-Cam as a programmable camera research platform,” Imaging Sensors and Systems, 2022, PP. 232-2.
[28] L. Rabiner, & B. Juang, “An introduction to hidden Markov models,” IEEE ASSP Magazine, vol. 3, no.1, pp. 4-16, 1986.
[29] D. Khurana, A. Koli, K. Khatter & S. Singh, “Natural language processing: State of the art, current trends and challenges,” Multimedia tools and applications, vol. 82, no. 3, pp. 3713-3744, 2023.
[30] G. Alexakis, S. Panagiotakis, A. Fragkakis, E. Markakis & K. Vassilakis, “Control of smart home operations using natural language processing, voice recognition and IoT technologies in a multi-tier architecture,” Designs, vol. 3, no. 3, 32, 2019.
[31] S. Monk, “Programming Arduino: getting started with sketches,” McGraw-Hill Education, 2023.
[32] H. A. Goh, C. K. Ho, & F. S. Abas, “Front-end deep learning web apps development and deployment: a review”, Applied Intelligence, 2022, pp. 1-23.
[33] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, ...& C. L. Zitnick, “Microsoft coco: Common objects in context,” In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, Proceedings, Part V 13, Springer International Publishing, 2014, pp. 740–755.
[34] C. H. Chen, M. Y. Lin, and X. C. Guo, “High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things,” Computers. Electrical. Eng., vol. 61, pp. 48–66, 2017.
[35] R. Hidayat, “Frequency domain analysis of MFCC feature extraction in children’s speech recognition system,” JURNAL INFOTEL, vol. 14, no. 1, pp. 30-36, 2022.
[36] M. Bakouri, M. Alsehaimi, H. F. Ismail, K. Alshareef, A. Ganoun, A. Alqahtani & Y. Alharbi, “Steering a robotic wheelchair based on voice recognition system using convolutional neural networks,” Electronics, vol. 11, no. 1, pp. 168, 2022.
指導教授 陳慶瀚(Ching-Han Chen) 審核日期 2023-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明