博碩士論文 110453048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.15.218.44
姓名 劉鴻儀(Hung-Yi Liu)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 利用文字探勘技術分析評論特徵因子對於體驗品評論有益性之影響:以IMDb 為例
(Using text mining technology to analyze the influence characteristic factors on the helpfulness of reviews on experience goods: An example of IMDb)
相關論文
★ 不動產仲介業銷售住宅類別之成交預測模型—以不動產仲介S公司為例★ 應用文字探勘技術建構預測客訴問題類別機器學習模型
★ 以機器學習技術建構顧客回購率預測模型:以某手工皂原料電子商務網站為例★ 以機器學習建構股價預測模型:以台灣股市為例
★ 以機器學習方法建構財務危機之預測模型:以台灣上市櫃公司為例★ 運用資料探勘技術於股票填息之預測模型:以台灣股市上市公司為例
★ 運用資料探勘技術優化 次世代防火牆規則之研究★ 應用資料探勘技術於電子病歷文本中識別相關新資訊
★ 應用深度學習於藥品後市場監督:Twitter文本分類任務★ 運用電子病歷與資料探勘技術建構腦中風病人心房顫動預測模型
★ 考量特徵選取與隨機森林之遺漏值填補技術★ 電子病歷縮寫消歧與一對多分類任務
★ 運用Meta-path與注意力機制改善個人化穿搭推薦★ 運用機器學習技術建構核保風險預測模型:以A公司為例
★ 風扇壽命預測使用大數據分析-以 X 公司為例★ 使用文字探勘與深度學習技術建置中風後肺炎之預測模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 在線評論已經變成消費者重要的購買參考決策,它給消費者提供了豐富的參考資訊,但同時也帶給消費者資料過載的問題。消費的在線評論可分為兩種:一種是基於體驗品評論,另一種則是基於搜尋品評論。一般來說基於搜尋品的評論會更注重在產品功能上,基於體驗品的評論則由於每個人對體驗品的體驗都不同,通常難以判斷對於評論購買決策是否帶來有益性幫助。
本研究的研究對象為電影評論,通過IMDb網站使用爬蟲技術蒐集電影評論與電影資訊做為本研究資料集,資料集經過預處理後共有116,593筆並整理出Action、Adventure、Drama 3種電影分類、9種特徵類別並以是否使用文字探勘技術拆分為文本類型以及非文本類型。在迴歸預測方法採監督式機器學習模型 Random Forest、XGBoost、Adaboost並設計5項實驗,實驗中特徵類別組合選取上採逐步迴歸向前選擇法來進行。
從實驗結果可以得知比較預測方法的結果以Random Forest為最佳結果;使用非文本相關特徵類別的結果結論閱讀評論者會相信信任的評論者評論並參考此評論者對於電影的投票且評論發佈的時間越久以及評論發佈的時間與電影上映時間越短都對評論有益性的預測有所幫助;使用文本相關特徵類別的結果得知文字向量BERT為最重要的單項文本特徵類別,在組合方面Drama電影類型所要參考的文本特徵類別數量會大於Action/Adventure電影類別,這是因為Drama的電影類別具有較多的劇情,閱讀評論者會較為詳細的去閱讀評論本身而非只是參考評論本身的情緒或關鍵字等;使用非文本+文本相關特徵類別的結果得知文本的特徵類別對於提升電影評論有益性模型的準確度不一定能帶來幫助,最後從實驗結果的數據上證明使用逐步迴歸法確實可以有效找出特徵類別組合並提升評論有益性預測準確度。
摘要(英) Online reviews have become an important reference for consumers in their purchasing decisions, providing them with a wealth of information, but also presenting them with the problem of data overload. online reviews can be divided into two kinds: one is based on experience reviews. Generally, search-based reviews focus more on product features and experience-based reviews are more subjective and emotional because each person′s experience is different, It is difficult to judge the usefulness of the review in making a purchase decision.
The research object of this study is movie reviews. Using NLP technology to analyze the characteristic categories of criticism on electricity the influence of the beneficial effect of film reviews helps consumers to find out the beneficial effect of experience products from a large number of reviews. Via IMDb the website uses crawler technology to collect movie reviews and movie information as the data set of this study. After preprocessing, data is total 116,593. The data were categorized into three movie types: Action, Adventure, and Drama movies, nine feature categories, and whether the feature categories were split into text types and non-text types using text exploration techniques. In this study, we adopt a supervised machine learning model, use Random Forest, XGBoost, and Adaboost in the regression prediction method, and design five sets of experiments for research, use the stepwise regression forward selection method was used to test the combination of different feature categories the best combination of feature categories was selected.
After the experiment, it was found that the Random Forest method could achieve better results. In the non-text category, readers will trust the reviews of trusted reviewers and reference that reviewer′s vote for the movie, the older the review and the shorter the release date of the review and the release date of the film both predicted the beneficial effects of the review text vector. BERT is the most important single text feature category. In terms of combination, the number of textual feature categories to refer to in the Drama genre is larger than the Action/Adventure genre because the reader not only focus in the referring to the comments themselves in terms of mood or keywords, etc., as well as from research experiments it is known that when non-text and text-related feature categories are used, the feature categories of text are beneficial to improve the review of all film categories the accuracy of the model does not necessarily help.Finally, stepwise regression that it can effectively improve the accuracy of the beneficial prediction.
關鍵字(中) ★ 情感分析
★ 逐步迴歸向前選擇法
★ 評論有益性
關鍵字(英) ★ Sentiment Analysis
★ Stepwise regression forward selection
★ Review Helpfulness
論文目次 目錄
第一章 緒論 1
1.1研究背景 1
1.2研究動機 3
1.3研究目的 4
第二章 文獻探討 6
2.1評論有益性 6
2.2電影評論有益性的相關文獻研究 12
第三章 研究方法 16
3.1資料集來源 17
3.2資料預處理 20
3.3研究變數 21
3.4實驗設計 27
3.5資料驗證與評估指標 31
第四章 實證結果分析 33
4.1實驗結果 33
4.2實驗小結 42
第五章 結論與建議 44
5.1研究結論與貢獻 44
5.2研究限制 46
5.3未來研究方向與建議 46
參考文獻 47

圖目錄
圖 1:整體研究流程架構 16
圖 2:IMDb評論頁面爬蟲目標欄位範例 18
圖 3:實驗1文本/非文本/文本+非文本 平均評估指標預測方法比較 27
圖 4:本研究逐步迴歸向前選擇法範例步驟圖 29
圖 5:實驗2非文本類別單項/組合比較 30
圖 6:實驗3文本類別單項/組合比較 30
圖 7:實驗4非文本 + 文本類別單項/組合比較 31
圖 8:實驗5全部特徵變項 + Feature Selection (CFS) 31
圖 9:Weka Feature Selection (CFS) 相關參數設定 41

表目錄
表 1:評論有益性特徵變項相關文獻整理 14
表 2:資料庫Crawler Table欄位 20
表 3:(文本/非文本/本文+非文本) 平均評估指標預測方法比較結果表 33
表 4:非文本類別單項比較 34
表 5:非文本類別組合比較 35
表 6:文本類別單項比較 36
表 7:文本類別組合比較 37
表 8:非文本 + 文本類別單項比較 38
表 9:非文本 + 文本類別組合比較 40
表 10:電影類別全部特徵變項 + Feature Selection(CFS)結果 41
表 11:Feature Selection (CFS) 結果與實驗4結果比較彙整表 41
參考文獻 Alaparthi, S., & Mishra, M. (2020). Bidirectional Encoder Representations from Transformers (BERT): A sentiment analysis odyssey (arXiv:2007.01127). arXiv. https://doi.org/10.48550/arXiv.2007.01127
Baccianella, S., Esuli, A., & Sebastiani, F. (2010, May). SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). LREC 2010, Valletta, Malta. http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
Bei, L.-T., Chen, E. Y. I., & Widdows, R. (2004). Consumers’ Online Information Search Behavior and the Phenomenon of Search vs. Experience Products. Journal of Family and Economic Issues, 25(4), 449–467. https://doi.org/10.1007/s10834-004-5490-0
Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31–40. https://doi.org/10.1002/dir.1014
Boukadi, K., & Ben-Abdallah, E. (2022). The effect of Facebook behaviors on the prediction of review helpfulness. Journal of Data Mining & Digital Humanities, 2022. https://jdmdh.episciences.org/10325/pdf
Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the “helpfulness” of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511–521. https://doi.org/10.1016/j.dss.2010.11.009
Chatterjee, S. (2020). Drivers of helpfulness of online hotel reviews: A sentiment and emotion mining approach. International Journal of Hospitality Management, 85, 102356. https://doi.org/10.1016/j.ijhm.2019.102356
Chetioui, Y., Butt, I., & Lebdaoui, H. (2021). Facebook advertising, eWOM and consumer purchase intention-Evidence from a collectivistic emerging market. Journal of Global Marketing, 34(3), 220–237. https://doi.org/10.1080/08911762.2021.1891359
Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461–470. https://doi.org/10.1016/j.dss.2012.06.008
Chintagunta, P. K., Gopinath, S., & Venkataraman, S. (2010). The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets. Marketing Science, 29(5), 944–957. https://doi.org/10.1287/mksc.1100.0572
Chua, A. Y. K., & Banerjee, S. (2015). Understanding review helpfulness as a function of reviewer reputation, review rating, and review depth. Journal of the Association for Information Science and Technology, 66(2), 354–362. https://doi.org/10.1002/asi.23180
Deng, W., Yi, M., & Lu, Y. (2020). Vote or not? How various information cues affect helpfulness voting of online reviews. Online Information Review, 44(4), 787–803. https://doi.org/10.1108/OIR-10-2018-0292
Dong, R., Schaal, M., O’Mahony, M. P., & Smyth, B. (2013). Topic extraction from online reviews for classification and recommendation. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, 1310–1316.
Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. Journal of Business Research, 135, 758–773. https://doi.org/10.1016/j.jbusres.2021.07.015
Duan, W., Gu, B., & Whinston, A. B. (2008). Do online reviews matter? — An empirical investigation of panel data. Decision Support Systems, 45(4), 1007–1016. https://doi.org/10.1016/j.dss.2008.04.001
Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets. Information Systems Research, 19(3), 291–313. https://doi.org/10.1287/isre.1080.0193
Ghose, A., & Ipeirotis, P. G. (2011). Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics. IEEE Transactions on Knowledge and Data Engineering, 23(10), 1498–1512. https://doi.org/10.1109/TKDE.2010.188
Hu, Y.-H., & Chen, K. (2016). Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings. International Journal of Information Management, 36(6, Part A), 929–944. https://doi.org/10.1016/j.ijinfomgt.2016.06.003
Huang, L., Tan, C.-H., Ke, W., & Wei, K.-K. (2013). Comprehension and Assessment of Product Reviews: A Review-Product Congruity Proposition. Journal of Management Information Systems, 30(3), 311–343. https://doi.org/10.2753/MIS0742-1222300311
Ismagilova, E., Rana, N. P., Slade, E. L., & Dwivedi, Y. K. (2020). A meta-analysis of the factors affecting eWOM providing behaviour. European Journal of Marketing, 55(4), 1067–1102. https://doi.org/10.1108/EJM-07-2018-0472
Izogo, E. E., Mpinganjira, M., & Ogba, F. N. (2020). Does the collectivism/individualism cultural orientation determine the effect of customer inspiration on customer citizenship behaviors? Journal of Hospitality and Tourism Management, 43, 190–198. https://doi.org/10.1016/j.jhtm.2020.04.001
Lee, M., Kwon, W., & Back, K.-J. (2021). Artificial intelligence for hospitality big data analytics: Developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117–2136. https://doi.org/10.1108/IJCHM-06-2020-0587
Liu, Y. (2006). Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue. Journal of Marketing, 70(3), 74–89. https://doi.org/10.1509/jmkg.70.3.074
Liu, Y., Huang, X., An, A., & Yu, X. (2008). Modeling and Predicting the Helpfulness of Online Reviews. 2008 Eighth IEEE International Conference on Data Mining, 443–452. https://doi.org/10.1109/ICDM.2008.94
Liu, Z., Hong, L., & Liu, L. (2014). An investigation of online review helpfulness based on movie reviews. African Journal of Business Management, 8(12), 441–450. https://doi.org/10.5897/AJBM11.2628
López, I., & Parra, J. (2016). Is a most helpful eWOM review really helpful? The impact of conflicting aggregate valence and consumer’s goals on product attitude. Internet Research, 26, 827–844. https://doi.org/10.1108/IntR-07-2014-0176
Luo, L., Duan, S., Shang, S., & Pan, Y. (2021). What makes a helpful online review? Empirical evidence on the effects of review and reviewer characteristics. Online Information Review, 45(3), 614–632. https://doi.org/10.1108/OIR-05-2020-0186
Luo, Y., & Xu, X. (2019). Predicting the Helpfulness of Online Restaurant Reviews Using Different Machine Learning Algorithms: A Case Study of Yelp. Sustainability, 11, 5254. https://doi.org/10.3390/su11195254
Malik, M. S. I. (2020). Predicting users’ review helpfulness: The role of significant review and reviewer characteristics. Soft Computing, 24(18), 13913–13928. https://doi.org/10.1007/s00500-020-04767-1
Muda, M., & Hamzah, M. I. (2021). Should I suggest this YouTube clip? The impact of UGC source credibility on eWOM and purchase intention. Journal of Research in Interactive Marketing, 15(3), 441–459. https://doi.org/10.1108/JRIM-04-2020-0072
Nam, K., Baker, J., Ahmad, N., & Goo, J. (2020). Determinants of writing positive and negative electronic word-of-mouth: Empirical evidence for two types of expectation confirmation. Decision Support Systems, 129, 113168. https://doi.org/10.1016/j.dss.2019.113168
Naujoks, A., & Benkenstein, M. (2020). Who is behind the message? The power of expert reviews on eWOM platforms. Electronic Commerce Research and Applications, 44, 101015. https://doi.org/10.1016/j.elerap.2020.101015
Nguyen, L. T. K., Chung, H.-H., Tuliao, K. V., & Lin, T. M. Y. (2020). Using XGBoost and Skip-Gram Model to Predict Online Review Popularity. SAGE Open, 10(4), 2158244020983316. https://doi.org/10.1177/2158244020983316
O’Mahony, M. P., & Smyth, B. (2010). A classification-based review recommender. Knowledge-Based Systems, 23(4), 323–329. https://doi.org/10.1016/j.knosys.2009.11.004
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment Classification using Machine Learning Techniques. Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), 79–86. https://doi.org/10.3115/1118693.1118704
Park, D.-H., Lee, J., & Han, I. (2007). The Effect of On-Line Consumer Reviews on Consumer Purchasing Intention: The Moderating Role of Involvement. International Journal of Electronic Commerce, 11(4), 125–148. https://doi.org/10.2753/JEC1086-4415110405
Pennebaker, J., Francis, L., & Booth, R. (2001). Linguistic inquiry and word count: LIWC2001. LIWC Operators Manual 2001.
Pipalia, K., Bhadja, R., & Shukla, M. (2020). Comparative Analysis of Different Transformer Based Architectures Used in Sentiment Analysis. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART), 411–415. https://doi.org/10.1109/SMART50582.2020.9337081
Racherla, P., & Friske, W. (2012). Perceived ‘usefulness’ of online consumer reviews: An exploratory investigation across three services categories. Electronic Commerce Research and Applications, 11(6), 548–559. https://doi.org/10.1016/j.elerap.2012.06.003
Sotiriadis, M. D., & van Zyl, C. (2013). Electronic word-of-mouth and online reviews in tourism services: The use of twitter by tourists. Electronic Commerce Research, 13(1), 103–124. https://doi.org/10.1007/s10660-013-9108-1
Stone, P. J., & Hunt, E. B. (1963). A computer approach to content analysis: Studies using the General Inquirer system. Proceedings of the May 21-23, 1963, Spring Joint Computer Conference, 241–256. https://doi.org/10.1145/1461551.1461583
Turney, P. D. (2002). Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews (arXiv:cs/0212032). arXiv. https://doi.org/10.48550/arXiv.cs/0212032
Wiebe, J., & Riloff, E. (2005). Creating Subjective and Objective Sentence Classifiers from Unannotated Texts. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 486–497). Springer. https://doi.org/10.1007/978-3-540-30586-6_53
Wu, R., Chen, J., Lu Wang, C., & Zhou, L. (2022). The influence of emoji meaning multipleness on perceived online review helpfulness: The mediating role of processing fluency. Journal of Business Research, 141, 299–307. https://doi.org/10.1016/j.jbusres.2021.12.037
Yenter, A., & Verma, A. (2017). Deep CNN-LSTM with combined kernels from multiple branches for IMDb review sentiment analysis. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 540–546. https://doi.org/10.1109/UEMCON.2017.8249013
Zhao, P., Wu, J., Hua, Z., & Fang, S. (2018). Finding eWOM customers from customer reviews. Industrial Management & Data Systems, 119(1), 129–147. https://doi.org/10.1108/IMDS-09-2017-0418
Zhou, S., & Guo, B. (2017). The order effect on online review helpfulness: A social influence perspective. Decision Support Systems, 93, 77–87. https://doi.org/10.1016/j.dss.2016.09.016
Zhou, Y., & Yang, S. (2019). Roles of Review Numerical and Textual Characteristics on Review Helpfulness Across Three Different Types of Reviews. IEEE Access, 7, 27769–27780. https://doi.org/10.1109/ACCESS.2019.2901472
Zhu, L., Yin, G., & He, W. (2014). IS THIS OPINION LEADER’S REVIEW USEFUL? PERIPHERAL CUES FOR ONLINE REVIEW HELPFULNESS. 15(4), 14.

指導教授 胡雅涵 審核日期 2023-4-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明