參考文獻 |
Alaparthi, S., & Mishra, M. (2020). Bidirectional Encoder Representations from Transformers (BERT): A sentiment analysis odyssey (arXiv:2007.01127). arXiv. https://doi.org/10.48550/arXiv.2007.01127
Baccianella, S., Esuli, A., & Sebastiani, F. (2010, May). SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). LREC 2010, Valletta, Malta. http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
Bei, L.-T., Chen, E. Y. I., & Widdows, R. (2004). Consumers’ Online Information Search Behavior and the Phenomenon of Search vs. Experience Products. Journal of Family and Economic Issues, 25(4), 449–467. https://doi.org/10.1007/s10834-004-5490-0
Bickart, B., & Schindler, R. M. (2001). Internet forums as influential sources of consumer information. Journal of Interactive Marketing, 15(3), 31–40. https://doi.org/10.1002/dir.1014
Boukadi, K., & Ben-Abdallah, E. (2022). The effect of Facebook behaviors on the prediction of review helpfulness. Journal of Data Mining & Digital Humanities, 2022. https://jdmdh.episciences.org/10325/pdf
Cao, Q., Duan, W., & Gan, Q. (2011). Exploring determinants of voting for the “helpfulness” of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511–521. https://doi.org/10.1016/j.dss.2010.11.009
Chatterjee, S. (2020). Drivers of helpfulness of online hotel reviews: A sentiment and emotion mining approach. International Journal of Hospitality Management, 85, 102356. https://doi.org/10.1016/j.ijhm.2019.102356
Chetioui, Y., Butt, I., & Lebdaoui, H. (2021). Facebook advertising, eWOM and consumer purchase intention-Evidence from a collectivistic emerging market. Journal of Global Marketing, 34(3), 220–237. https://doi.org/10.1080/08911762.2021.1891359
Cheung, C. M. K., & Thadani, D. R. (2012). The impact of electronic word-of-mouth communication: A literature analysis and integrative model. Decision Support Systems, 54(1), 461–470. https://doi.org/10.1016/j.dss.2012.06.008
Chintagunta, P. K., Gopinath, S., & Venkataraman, S. (2010). The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets. Marketing Science, 29(5), 944–957. https://doi.org/10.1287/mksc.1100.0572
Chua, A. Y. K., & Banerjee, S. (2015). Understanding review helpfulness as a function of reviewer reputation, review rating, and review depth. Journal of the Association for Information Science and Technology, 66(2), 354–362. https://doi.org/10.1002/asi.23180
Deng, W., Yi, M., & Lu, Y. (2020). Vote or not? How various information cues affect helpfulness voting of online reviews. Online Information Review, 44(4), 787–803. https://doi.org/10.1108/OIR-10-2018-0292
Dong, R., Schaal, M., O’Mahony, M. P., & Smyth, B. (2013). Topic extraction from online reviews for classification and recommendation. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, 1310–1316.
Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. Journal of Business Research, 135, 758–773. https://doi.org/10.1016/j.jbusres.2021.07.015
Duan, W., Gu, B., & Whinston, A. B. (2008). Do online reviews matter? — An empirical investigation of panel data. Decision Support Systems, 45(4), 1007–1016. https://doi.org/10.1016/j.dss.2008.04.001
Forman, C., Ghose, A., & Wiesenfeld, B. (2008). Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets. Information Systems Research, 19(3), 291–313. https://doi.org/10.1287/isre.1080.0193
Ghose, A., & Ipeirotis, P. G. (2011). Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics. IEEE Transactions on Knowledge and Data Engineering, 23(10), 1498–1512. https://doi.org/10.1109/TKDE.2010.188
Hu, Y.-H., & Chen, K. (2016). Predicting hotel review helpfulness: The impact of review visibility, and interaction between hotel stars and review ratings. International Journal of Information Management, 36(6, Part A), 929–944. https://doi.org/10.1016/j.ijinfomgt.2016.06.003
Huang, L., Tan, C.-H., Ke, W., & Wei, K.-K. (2013). Comprehension and Assessment of Product Reviews: A Review-Product Congruity Proposition. Journal of Management Information Systems, 30(3), 311–343. https://doi.org/10.2753/MIS0742-1222300311
Ismagilova, E., Rana, N. P., Slade, E. L., & Dwivedi, Y. K. (2020). A meta-analysis of the factors affecting eWOM providing behaviour. European Journal of Marketing, 55(4), 1067–1102. https://doi.org/10.1108/EJM-07-2018-0472
Izogo, E. E., Mpinganjira, M., & Ogba, F. N. (2020). Does the collectivism/individualism cultural orientation determine the effect of customer inspiration on customer citizenship behaviors? Journal of Hospitality and Tourism Management, 43, 190–198. https://doi.org/10.1016/j.jhtm.2020.04.001
Lee, M., Kwon, W., & Back, K.-J. (2021). Artificial intelligence for hospitality big data analytics: Developing a prediction model of restaurant review helpfulness for customer decision-making. International Journal of Contemporary Hospitality Management, 33(6), 2117–2136. https://doi.org/10.1108/IJCHM-06-2020-0587
Liu, Y. (2006). Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue. Journal of Marketing, 70(3), 74–89. https://doi.org/10.1509/jmkg.70.3.074
Liu, Y., Huang, X., An, A., & Yu, X. (2008). Modeling and Predicting the Helpfulness of Online Reviews. 2008 Eighth IEEE International Conference on Data Mining, 443–452. https://doi.org/10.1109/ICDM.2008.94
Liu, Z., Hong, L., & Liu, L. (2014). An investigation of online review helpfulness based on movie reviews. African Journal of Business Management, 8(12), 441–450. https://doi.org/10.5897/AJBM11.2628
López, I., & Parra, J. (2016). Is a most helpful eWOM review really helpful? The impact of conflicting aggregate valence and consumer’s goals on product attitude. Internet Research, 26, 827–844. https://doi.org/10.1108/IntR-07-2014-0176
Luo, L., Duan, S., Shang, S., & Pan, Y. (2021). What makes a helpful online review? Empirical evidence on the effects of review and reviewer characteristics. Online Information Review, 45(3), 614–632. https://doi.org/10.1108/OIR-05-2020-0186
Luo, Y., & Xu, X. (2019). Predicting the Helpfulness of Online Restaurant Reviews Using Different Machine Learning Algorithms: A Case Study of Yelp. Sustainability, 11, 5254. https://doi.org/10.3390/su11195254
Malik, M. S. I. (2020). Predicting users’ review helpfulness: The role of significant review and reviewer characteristics. Soft Computing, 24(18), 13913–13928. https://doi.org/10.1007/s00500-020-04767-1
Muda, M., & Hamzah, M. I. (2021). Should I suggest this YouTube clip? The impact of UGC source credibility on eWOM and purchase intention. Journal of Research in Interactive Marketing, 15(3), 441–459. https://doi.org/10.1108/JRIM-04-2020-0072
Nam, K., Baker, J., Ahmad, N., & Goo, J. (2020). Determinants of writing positive and negative electronic word-of-mouth: Empirical evidence for two types of expectation confirmation. Decision Support Systems, 129, 113168. https://doi.org/10.1016/j.dss.2019.113168
Naujoks, A., & Benkenstein, M. (2020). Who is behind the message? The power of expert reviews on eWOM platforms. Electronic Commerce Research and Applications, 44, 101015. https://doi.org/10.1016/j.elerap.2020.101015
Nguyen, L. T. K., Chung, H.-H., Tuliao, K. V., & Lin, T. M. Y. (2020). Using XGBoost and Skip-Gram Model to Predict Online Review Popularity. SAGE Open, 10(4), 2158244020983316. https://doi.org/10.1177/2158244020983316
O’Mahony, M. P., & Smyth, B. (2010). A classification-based review recommender. Knowledge-Based Systems, 23(4), 323–329. https://doi.org/10.1016/j.knosys.2009.11.004
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment Classification using Machine Learning Techniques. Proceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP 2002), 79–86. https://doi.org/10.3115/1118693.1118704
Park, D.-H., Lee, J., & Han, I. (2007). The Effect of On-Line Consumer Reviews on Consumer Purchasing Intention: The Moderating Role of Involvement. International Journal of Electronic Commerce, 11(4), 125–148. https://doi.org/10.2753/JEC1086-4415110405
Pennebaker, J., Francis, L., & Booth, R. (2001). Linguistic inquiry and word count: LIWC2001. LIWC Operators Manual 2001.
Pipalia, K., Bhadja, R., & Shukla, M. (2020). Comparative Analysis of Different Transformer Based Architectures Used in Sentiment Analysis. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART), 411–415. https://doi.org/10.1109/SMART50582.2020.9337081
Racherla, P., & Friske, W. (2012). Perceived ‘usefulness’ of online consumer reviews: An exploratory investigation across three services categories. Electronic Commerce Research and Applications, 11(6), 548–559. https://doi.org/10.1016/j.elerap.2012.06.003
Sotiriadis, M. D., & van Zyl, C. (2013). Electronic word-of-mouth and online reviews in tourism services: The use of twitter by tourists. Electronic Commerce Research, 13(1), 103–124. https://doi.org/10.1007/s10660-013-9108-1
Stone, P. J., & Hunt, E. B. (1963). A computer approach to content analysis: Studies using the General Inquirer system. Proceedings of the May 21-23, 1963, Spring Joint Computer Conference, 241–256. https://doi.org/10.1145/1461551.1461583
Turney, P. D. (2002). Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews (arXiv:cs/0212032). arXiv. https://doi.org/10.48550/arXiv.cs/0212032
Wiebe, J., & Riloff, E. (2005). Creating Subjective and Objective Sentence Classifiers from Unannotated Texts. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 486–497). Springer. https://doi.org/10.1007/978-3-540-30586-6_53
Wu, R., Chen, J., Lu Wang, C., & Zhou, L. (2022). The influence of emoji meaning multipleness on perceived online review helpfulness: The mediating role of processing fluency. Journal of Business Research, 141, 299–307. https://doi.org/10.1016/j.jbusres.2021.12.037
Yenter, A., & Verma, A. (2017). Deep CNN-LSTM with combined kernels from multiple branches for IMDb review sentiment analysis. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), 540–546. https://doi.org/10.1109/UEMCON.2017.8249013
Zhao, P., Wu, J., Hua, Z., & Fang, S. (2018). Finding eWOM customers from customer reviews. Industrial Management & Data Systems, 119(1), 129–147. https://doi.org/10.1108/IMDS-09-2017-0418
Zhou, S., & Guo, B. (2017). The order effect on online review helpfulness: A social influence perspective. Decision Support Systems, 93, 77–87. https://doi.org/10.1016/j.dss.2016.09.016
Zhou, Y., & Yang, S. (2019). Roles of Review Numerical and Textual Characteristics on Review Helpfulness Across Three Different Types of Reviews. IEEE Access, 7, 27769–27780. https://doi.org/10.1109/ACCESS.2019.2901472
Zhu, L., Yin, G., & He, W. (2014). IS THIS OPINION LEADER’S REVIEW USEFUL? PERIPHERAL CUES FOR ONLINE REVIEW HELPFULNESS. 15(4), 14.
|