參考文獻 |
Abbasi-Moud, Z., Vahdat-Nejad, H., & Sadri, J. (2021). Tourism recommendation system based on semantic clustering and sentiment analysis. Expert Systems with Applications, 167, 114324. https://doi.org/https://doi.org/10.1016/j.eswa.2020.114324
Adamopoulos, P., Ghose, A., & Tuzhilin, A. (2022). Heterogeneous Demand Effects of Recommendation Strategies in a Mobile Application: Evidence from Econometric Models and Machine-Learning Instruments. MIS Quarterly, 46(1), 101-150. https://doi.org/10.25300/MISQ/2021/15611
Adamopoulos, P., & Tuzhilin, A. (2014). On Unexpectedness in Recommender Systems: Or How to Better Expect the Unexpected. ACM Transactions on Intelligent Systems and Technology, 5(4), Article 54. https://doi.org/10.1145/2559952
Adomavicius, G., & Kwon, Y. (2012). Improving Aggregate Recommendation Diversity Using Ranking-Based Techniques. IEEE Transactions on Knowledge and Data Engineering, 24(5), 896-911. https://doi.org/10.1109/TKDE.2011.15
Afoudi, Y., Lazaar, M., & Al Achhab, M. (2021). Hybrid recommendation system combined content-based filtering and collaborative prediction using artificial neural network. Simulation Modelling Practice and Theory, 113, 102375. https://doi.org/10.1016/j.simpat.2021.102375
Ahuja, R., Solanki, A., & Nayyar, A. (2019). Movie Recommender System Using K-Means Clustering AND K-Nearest Neighbor. 2019 9th International Conference on Cloud Computing, Data Science & Engineering. January 10-11 2019, Noida, India. https://doi.org/10.1109/CONFLUENCE.2019.8776969
Albayati, A. N. K., & Ortakci, Ö. Ü. Y. (2022). Recommendation Systems on Twitter Data for Marketing Purposes using Content-Based Filtering. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). June 09 - 11 2022 ,Ankara, Turkey. https://doi.org/10.1109/HORA55278.2022.9799989
Aljunid, M. F., & Dh, M. (2020). An Efficient Deep Learning Approach for Collaborative Filtering Recommender System. Procedia Computer Science, 171, 829-836. https://doi.org/10.1016/j.procs.2020.04.090
Asani, E., Vahdat-Nejad, H., & Sadri, J. (2021). Restaurant recommender system based on sentiment analysis. Machine Learning with Applications, 6, 100114. https://doi.org/10.1016/j.mlwa.2021.100114
Barrera, N., Torres, R., Rodríguez, J., Espinosa, O., Avellaneda, S., & Ramírez, J. (2023). A recommender system for occupational hygiene services using natural language processing. Healthcare Analytics, 100148. https://doi.org/10.1016/j.health.2023.100148
Bezerra, B., de Carvalho, F. d. A., Ramalho, G. L., & Zucker, J.-D. (2003). Speeding up recommender systems with meta-prototypes. Advances in Artificial Intelligence: 16th Brazilian Symposium on Artificial Intelligence, SBIA 2002 Porto de Galinhas/Recife. November 11–14 2002, Brazil. https://doi.org/10.1007/3-540-36127-8_22
Bilton, N. (2009). The American Diet: 34 Gigabytes a Day. The New York Times. https://www.nytimes.com/2009/12/10/technology/10data.html
Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems survey. Knowledge-Based Systems, 46, 109-132. https://doi.org/10.1016/j.knosys.2013.03.012
Bouazza, H., Said, B., & Zohra Laallam, F. (2022). A hybrid IoT services recommender system using social IoT. Journal of King Saud University - Computer and Information Sciences, 34(8, Part B), 5633-5645. https://doi.org/10.1016/j.jksuci.2022.02.003
Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, 12(4), 331-370. https://doi.org/10.1023/A:1021240730564
Burke, R. (2007). Hybrid Web Recommender Systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), The Adaptive Web: Methods and Strategies of Web Personalization (pp. 377-408). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-72079-9_12
Cataltepe, Z., Uluyagmur, M., & Tayfur, E. (2016). Feature selection for movie recommendation. Turkish Journal of Eletriccal Engineering and Ccomputer Sciences, 24(3), 833-848. https://doi.org/10.3906/elk-1303-189
Chai, Z. Y., Li, Y. L., Han, Y. M., & Zhu, S. F. (2019). Recommendation System Based on Singular Value Decomposition and Multi-Objective Immune Optimization. IEEE Access, 7, 6060-6071. https://doi.org/10.1109/ACCESS.2018.2842257
Channarong, C., Paosirikul, C., Maneeroj, S., & Takasu, A. (2022). HybridBERT4Rec: A Hybrid (Content-Based Filtering and Collaborative Filtering) Recommender System Based on BERT. IEEE Access, 10, 56193-56206. https://doi.org/10.1109/ACCESS.2022.3177610
Chaudhary, S. (2019). Why “1.5” in IQR Method of Outlier Detection? Shivam Chaudhary. https://towardsdatascience.com/why-1-5-in-iqr-method-of-outlier-detection-5d07fdc82097
Edmunds, A., & Morris, A. (2000). The problem of information overload in business organisations: a review of the literature. International Journal of Information Management, 20(1), 17-28. https://doi.org/https://doi.org/10.1016/S0268-4012(99)00051-1
Fang, W., Sha, Y., Qi, M. H., & Sheng, V. S. (2022). Movie Recommendation Algorithm Based on Ensemble Learning. Intellgent Automation and Soft Computing, 34(1), 609-622. https://doi.org/10.32604/iasc.2022.027067
Fararni, K. A., Nafis, F., Aghoutane, B., Yahyaouy, A., Riffi, J., & Sabri, A. (2021). Hybrid recommender system for tourism based on big data and AI: A conceptual framework. Big Data Mining and Analytics, 4(1), 47-55. https://doi.org/10.26599/BDMA.2020.9020015
Farooq, M., & Raju, V. (2019). Impact of over-the-top (OTT) services on the telecom companies in the era of transformative marketing. Global Journal of Flexible Systems Management, 20(2), 177-188. https://doi.org/10.1007/s40171-019-00209-6
Fleder, D. M., & Hosanagar, K. (2007). Recommender systems and their impact on sales diversity. In Proceedings of the 8th ACM conference on Electronic commerce. June 11-15 2007, San Diego, California, USA. https://doi.org/10.1145/1250910.1250939
Fu, S., Li, H., Liu, Y., Pirkkalainen, H., & Salo, M. (2020). Social media overload, exhaustion, and use discontinuance: Examining the effects of information overload, system feature overload, and social overload. Information Processing & Management, 57(6), 102307. https://doi.org/10.1016/j.ipm.2020.102307
Ge, M., Delgado-Battenfeld, C., & Jannach, D. (2010). Beyond accuracy: evaluating recommender systems by coverage and serendipity. In Proceedings of the fourth ACM conference on Recommender systems. September 26 - 30 2010, Barcelona, Spain. https://doi.org/10.1145/1864708.1864761
Ghasemi, N., & Momtazi, S. (2021). Neural text similarity of user reviews for improving collaborative filtering recommender systems. Electronic Commerce Research and Applications, 45, 101019. https://doi.org/10.1016/j.elerap.2020.101019
Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using Collaborative Filtering to Weave an Information Tapestry. Commun. ACM, 35(12), 61–70. https://doi.org/10.1145/138859.138867
Gomez-Uribe, C. A., & Hunt, N. (2016). The Netflix Recommender System: Algorithms, Business Value, and Innovation. ACM Transactions on Management Information Systems, 6(4). https://doi.org/10.1145/2843948
Grand-View-Research. (2019). Recommendation Engine Market Size, Share & Trends Analysis Report By Type (Collaborative Filtering, Hybrid Recommendation), By Deployment, By Application, By Organization, By End-use, By Region, And Segment Forecasts, 2021 - 2028. https://www.grandviewresearch.com/industry-analysis/recommendation-engine-market-report
Harper, F. M., & Konstan, J. A. (2015). The MovieLens Datasets: History and Context.
ACM Transactions on Management Information Systems, 5(4). https://doi.org/10.1145/2827872
Hassan, H. A. M., Sansonetti, G., Gasparetti, F., Micarelli, A., & Beel, J. (2019). BERT, ELMo, USE and InferSent Sentence Encoders: The Panacea for Research-Paper Recommendation, ACM Conference on Recommender Systems.
http://ceur-ws.org/Vol-2431/paper2.pdf
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Management Information Systems, 22(1), 5–53. https://doi.org/10.1145/963770.963772
Hu, Rong, & Pu, Pearl. (2011). Helping users perceive recommendation diversity. DiveRS@ RecSys, ceur-ws.org/Vol-816/paper6.pdf
Hu, Y. T., Xiong, F., Lu, D. Y., Wang, X. M., Xiong, X., & Chen, H. S. (2020). Movie collaborative filtering with multiplex implicit feedbacks. Neurocomputing, 398, 485-494. https://doi.org/10.1016/j.neucom.2019.03.098
Jacob, Devlin, Ming-Wei, C., Kenton, L., & Kristina, T. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. https://doi.org/10.48550/arXiv.1810.04805
Jain, Kaneenika. (2021). The Rise of OTT Platform: Changing Consumer Preferences. EPRA International Journal of Multidisciplinary Research (IJMR), 7(6), 257-261. A2504040110.pdf (iosrjournals.org)
Jain, S., Grover, A., Thakur, P. S., & Choudhary, S. K. (2015). Trends, problems and solutions of recommender system. International Conference on Computing, Communication & Automation. May 15-16 2015, Greater Noida, India.
https://www.doi.org/10.1109/CCAA.2015.7148534
Jung, J., & Melguizo, Á. (2023). Is your netflix a substitute for your telefunken? Evidence on the dynamics of traditional pay TV and OTT in Latin America. Telecommunications Policy, 47(1), 102397. https://doi.org/10.1016/j.telpol.2022.102397
Kaminskas, M., & Bridge, D. (2016). Diversity, Serendipity, Novelty, and Coverage: A Survey and Empirical Analysis of Beyond-Accuracy Objectives in Recommender Systems. ACM Transactions on Management Information Systems, 7(1), Article 2. https://doi.org/10.1145/2926720
Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu, H., & Newell, C. (2012). Explaining the user experience of recommender systems. User Modeling and User-Adapted Interaction, 22(4), 441-504. https://doi.org/10.1007/s11257-011-9118-4
Ko, H., Lee, S., Park, Y., & Choi, A. (2022). A Survey of Recommendation Systems: Recommendation Models, Techniques, and Application Fields. Electronics, 11(1). https://www.mdpi.com/2079-9292/11/1/141
Koren, Y. (2009). Collaborative filtering with temporal dynamics. Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. 2009 Paris, France. https://doi.org/10.1145/1557019.1557072
Koren, Y., Rendle, S., & Bell, R. (2022). Advances in Collaborative Filtering. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender Systems Handbook (pp. 91-142). Springer US. https://doi.org/10.1007/978-1-0716-2197-4_3
Krikke, J. (2004). Streaming video transforms the media industry. IEEE Computer Graphics and Applications, 24(4), 6-12. https://doi.org/10.1109/MCG.2004.17
Kumar, S., De, K., & Roy, P. P. (2020). Movie Recommendation System Using Sentiment Analysis From Microblogging Data [Article]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 7(4), 915-923. https://doi.org/10.1109/tcss.2020.2993585
Kunaver, M., & Požrl, T. (2017). Diversity in recommender systems – A survey. Knowledge-Based Systems, 123, 154-162. https://doi.org/https://doi.org/10.1016/j.knosys.2017.02.009
Li, X., & Murata, T. (2012, 4-7 Dec. 2012). Using Multidimensional Clustering Based Collaborative Filtering Approach Improving Recommendation Diversity. 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology,
Liang, T.-P., Lai, H.-J., & Ku, Y.-C. (2006). Personalized Content Recommendation and User Satisfaction: Theoretical Synthesis and Empirical Findings. Journal of Management Information Systems, 23(3), 45-70. https://doi.org/10.2753/MIS0742-1222230303
Liao, M., & Sundar, S. S. (2022). When E-Commerce Personalization Systems Show and Tell: Investigating the Relative Persuasive Appeal of Content-Based versus Collaborative Filtering. Journal of Advertising, 51(2), 256-267. https://doi.org/10.1080/00913367.2021.1887013
LLP, M. I. (2023). Recommendation Engine Market - Growth, Trends, COVID-19 Impact, and Forecasts (2023 - 2028). M. I. LLP. Recommendation Engine Market - Growth, Trends, COVID-19 (globenewswire.com)
Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015). Recommender system application developments: A survey. Decision Support Systems, 74, 12-32. https://doi.org/10.1016/j.dss.2015.03.008
Mahdi, M. N., Ahmad, A. R., Ismail, R., Subhi, M. A., Abdulrazzaq, M. M., & Qassim, Q. S. (2020). Information Overload: The Effects of Large Amounts of Information. 2020 1st. Information Technology To Enhance e-learning and Other Application. July 12-13 2020, Baghdad, Iraq. https://www.doi.org/10.1109/IT-ELA50150.2020.9253082
Marcuzzo, M., Zangari, A., Albarelli, A., & Gasparetto, A. (2022). Recommendation Systems: An Insight Into Current Development and Future Research Challenges. IEEE Access, 10, 86578-86623. https://doi.org/10.1109/Access.2022.3194536
Mathew, P., Kuriakose, B., & Hegde, V. (2016). Book Recommendation System through content based and collaborative filtering method. 2016 International Conference on Data Mining and Advanced Computing (SAPIENCE). March 16-18 2016, Ernakulam, India. https://www.doi.org/10.1109/SAPIENCE.2016.7684166
Mishra, R. K., Urolagin, S., & J, A. A. J. (2019). A Sentiment analysis-based hotel recommendation using TF-IDF Approach. 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE).
December 11-12 2019, Dubai, United Arab Emirates. https://www.doi.org/10.1109/ICCIKE47802.2019.9004385
Natarajan, S., Vairavasundaram, S., Natarajan, S., & Gandomi, A. H. (2020). Resolving data sparsity and cold start problem in collaborative filtering recommender system using Linked Open Data. Expert Systems with Applications, 149, Article 113248. https://doi.org/10.1016/j.eswa.2020.113248
NCC. (2016). 2016 Performance Report. https://www.ncc.gov.tw/english/files/18022/382_2184_180227_1.pdf
Ozok, A. A., Fan, Q., & Norcio, A. F. (2010). Design guidelines for effective recommender system interfaces based on a usability criteria conceptual model: results from a college student population. Behaviour & Information Technology, 29(1), 57-83. https://www.doi.org/10.1080/01449290903004012
Park, S., & Kwon, Y. (2019). Research on the Relationship between the Growth of OTT Service Market and the Change in the Structure of the Pay-TV Market. 30th European Conference of the International Telecommunications Society (ITS). June 16-19 2019, Helsinki, Finland. https://www.econstor.eu/handle/10419/205203
Park, S.-H., & Han, S. P. (2012). Empirical analysis of the impact of product diversity on long-term performance of recommender systems. Proceedings of the 14th Annual International Conference on Electronic Commerce, https://doi.org/10.1145/2346536.2346592
Pujahari, A., & Sisodia, D. S. (2022). Item feature refinement using matrix factorization and boosted learning based user profile generation for content-based recommender systems. Expert Systems with Applications, 206, 117849. https://doi.org/ 10.1016/j.eswa.2022.117849
Qing, L., & Kim. (2003). Clustering approach for hybrid recommender system.In Proceedings IEEE/WIC International Conference on Web Intelligence, December 14 - 17 2003, Melbourne, Australia. https://doi.org/10.1109/WI.2003.1241167
Ranjan, A. A., Rai, A., Haque, S., Lohani, B. P., & Kushwaha, P. K. (2019). An approach for Netflix recommendation system using singular value decomposition. Journal of Computer and Mathematical Sciences, 10(4), 774-779. http://www.compmath-journal.org/dnload/Ankur-A-Ranjan-Amod-Rai-Saiful-Haque-Bhanu-P-Lohani4and-Pradeep-K-Kushwaha5/CMJV10I04P0774.pdf
Rhanoui, M., Mikram, M., Yousfi, S., Kasmi, A., & Zoubeidi, N. (2022). A hybrid recommender system for patron driven library acquisition and weeding. Journal of King Saud University - Computer and Information Sciences, 34(6, Part A), 2809-2819. https://doi.org/10.1016/j.jksuci.2020.10.017
Robin van, M. (2000). Using Content-Based Filtering for Recommendation. In Proceedings of the machine learning in the new information age: MLnet/ECML2000 workshop (Vol. 30, pp. 47-56). http://users.ics.forth.gr/~potamias/mlnia/paper_6.pdf
Salter, J., & Antonopoulos, N. (2006). CinemaScreen recommender agent: combining collaborative and content-based filtering. IEEE Intelligent Systems, 21(1), 35-41. https://doi.org/10.1109/MIS.2006.4
Salton, G. (1983). Introduction to modern information retrieval. McGraw-Hill. https://dl.acm.org/doi/abs/10.5555/576628
Shambour, Q. Y., Abu-Shareha, A. A., & Abualhaj, M. M. (2022). A Hotel Recommender System Based on Multi-Criteria Collaborative Filtering. Information Technology and Control, 51(2), 390-402. https://doi.org/10.5755/j01.itc.51.2.30701
Shandilya, R., Sharma, S., & Wong, J. (2022). MATURE-Food: Food Recommender System for MAndatory FeaTURE Choices A system for enabling Digital Health. International Journal of Information Management Data Insights, 2(2), 100090. https://doi.org/10.1016/j.jjimei.2022.100090
Sharma, B., Hashmi, A., Gupta, C., Khalaf, O. I., Abdulsahib, G. M., & Itani, M. M. (2022). Hybrid Sparrow Clustered (HSC) Algorithm for Top-N Recommendation System. Symmetry-Basel, 14(4), 16, Article 793. https://doi.org/10.3390/sym14040793
Sivamol, S., & Suresh, K. (2019). Personalization Phenom: User-centric Perspectives towards Recommendation Systems in Indian Video Services. SCMS Journal of Indian Management, 16(2), 73-86.
Son, J., & Kim, S. B. (2017). Content-based filtering for recommendation systems using multiattribute networks. Expert Systems with Applications, 89, 404-412. https://doi.org/https://doi.org/10.1016/j.eswa.2017.08.008
Su, X., & Khoshgoftaar, T. M. (2009). A Survey of Collaborative Filtering Techniques. Advances in Artificial Intelligence, 2009. https://doi.org/10.1155/2009/421425
Tandoc, E. C., & Kim, H. K. (2022). Avoiding real news, believing in fake news? Investigating pathways from information overload to misbelief. Journalism, 14648849221090744. https://doi.org/10.1177/14648849221090744
Thorat, P., Goudar, R., & Barve, S. (2015). Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System. International Journal of Computer Applications, 110, 31-36. https://doi.org/10.5120/19308-0760
TMDb. (2017). The Movie Database (TMDb). The Movie Database (TMDb). https://www.themoviedb.org/
Vargas, S. (2011). New approaches to diversity and novelty in recommender systems. Fourth BCS-IRSG Symposium on Future Directions in Information Access (FDIA 2011) (FDIA). https://www.scienceopen.com/hosted-document?doi=10.14236/ewic/FDIA2011.2
Vargas, S., Baltrunas, L., Karatzoglou, A., & Castells, P. (2014). Coverage, redundancy and size-awareness in genre diversity for recommender systems. Proceedings of the 8th ACM Conference on Recommender systems,
Vargas, S., & Castells, P. (2011). Rank and relevance in novelty and diversity metrics for recommender systems Proceedings of the fifth ACM conference on Recommender systems, Chicago, Illinois, USA. https://doi.org/10.1145/2043932.2043955
Vozalis, M. G., & Margaritis, K. G. (2005). Applying SVD on item-based filtering. 5th International Conference on Intelligent Systems Design and Applications (ISDA05),
September 8-10 2005, Watsaw. https://doi.org/10.1109/ISDA.2005.25
Walek, B., & Fojtik, V. (2020). A hybrid recommender system for recommending relevant movies using an expert system. Expert Systems with Applications, 158, 113452. https://doi.org/10.1016/j.eswa.2020.113452
Wei, Sha, Y., Qi, M., & Sheng, V. S. (2022). Movie Recommendation Algorithm Based on Ensemble Learning. Intelligent Automation & Soft Computing, 609-622. https://doi.org/10.32604/iasc.2022.027067
Yadalam, T. V., Gowda, V. M., Kumar, V. S., Girish, D., & N, M. (2020). Career Recommendation Systems using Content based Filtering. 2020 5th International Conference on Communication and Electronics Systems (ICCES), June 10-12 2020, Coimbatore, India. https://doi.org/10.1109/ICCES48766.2020.9137992
Yang, N., Jo, J., Jeon, M., Kim, W., & Kang, J. (2022). Semantic and explainable research-related recommendation system based on semi-supervised methodology using BERT and LDA models. Expert Systems with Applications, 190, 116209. https://doi.org/ 10.1016/j.eswa.2021.116209
Yuan, Lixin, H., Subin, Q., Guoxia, X., & Hong, Y. (2019). Singular value decomposition based recommendation using imputed data. Knowledge-Based Systems, 163, 485-494. https://doi.org/10.1016/j.knosys.2018.09.011
Zagranovskaia, A., & Mitura, D. (2022). Designing Hybrid Recommender Systems. IV International Scientific and Practical Conference, 1-5. https://doi.org/10.1145/3487757.3490921
Zhang, M., & Hurley, N. (2008). Avoiding monotony: improving the diversity of recommendation lists.In Proceedings of the 2008 ACM conference on Recommender systems, 2008, Lausanne, Switzerland. https://doi.org/10.1145/1454008.1454030
Zins, A. H., & Bauernfeind, U. (2005). Explaining online purchase planning experiences with recommender websites. In Information and Communication Technologies in Tourism 2005 (pp. 137-148). https://doi.org/10.1007/3-211-27283-6_13 |