參考文獻 |
Abarbanell, J. S., & Bushee, B. J. (1997). Fundamental Analysis, Future Earnings, and Stock Prices. Journal of Accounting Research, 35(1), 1–24.
Ahmad, W., Kazmi, B. M., & Ali, H. (2019). Human Activity Recognition using Multi-Head CNN followed by LSTM. 2019 15th International Conference on Emerging Technologies (ICET), 1–6.
Akşehir, Z. D., & Kiliç, E. (2022). How to Handle Data Imbalance and Feature Selection Problems in CNN-Based Stock Price Forecasting. IEEE Access, 10, 31297–31305.
Akşehir, Z. D., & Kılıç, E. (2022). The Effect of Statistical Attributes on the Determination of Stock Trading Actions. 2022 7th International Conference on Computer Science and Engineering (UBMK), 13–18.
Barra, S., Carta, S. M., Corriga, A., Podda, A. S., & Recupero, D. R. (2020). Deep learning and time series-to-image encoding for financial forecasting. IEEE/CAA Journal of Automatica Sinica, 7(3), 683–692.
Canizo, M., Triguero, I., Conde, A., & Onieva, E. (2019). Multi-head CNN–RNN for multi-time series anomaly detection: An industrial case study. Neurocomputing, 363, 246–260.
Chandar, S. K. (2022). Convolutional neural network for stock trading using technical indicators. Automated Software Engineering, 29(1), 16.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357.
Chen, Y.-C., & Huang, W.-C. (2021). Constructing a stock-price forecast CNN model with gold and crude oil indicators. Applied Soft Computing, 112, 107760.
Fawzi, A., Samulowitz, H., Turaga, D., & Frossard, P. (2016). Adaptive data augmentation for image classification. 2016 IEEE International Conference on Image Processing (ICIP), 3688–3692.
Fons, E., Dawson, P., Zeng, X., Keane, J., & Iosifidis, A. (2020). Evaluating data augmentation for financial time series classification (arXiv:2010.15111). arXiv. http://arxiv.org/abs/2010.15111
G. L. Morris. (2006). Candlestick Charting Explained: Timeless Techniques for Trading Stocks and Sutures. McGraw Hill.
Gudelek, M. U., Boluk, S. A., & Ozbayoglu, A. M. (2017). A deep learning based stock trading model with 2-D CNN trend detection. 2017 IEEE Symposium Series on Computational Intelligence (SSCI), 1–8.
Guennec, A. L., Malinowski, S., & Tavenard, R. (2016, September 19). Data Augmentation for Time Series Classification using Convolutional Neural Networks. ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data. https://shs.hal.science/halshs-01357973
He, H., & Garcia, E. A. (2009). Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 21(9), 1263–1284.
Hu, G., Hu, Y., Yang, K., Yu, Z., Sung, F., Zhang, Z., Xie, F., Liu, J., Robertson, N., Hospedales, T., & Miemie, Q. (2018). Deep Stock Representation Learning: From Candlestick Charts to Investment Decisions. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2706–2710.
Hung, C.-C., Chen, Y.-J., Guo, S. J., & Hsu, F.-C. (2020). Predicting the price movement from candlestick charts: A CNN-based approach. International Journal of Ad Hoc and Ubiquitous Computing, 34(2), 111–120.
Iwana, B. K., & Uchida, S. (2021). An Empirical Survey of Data Augmentation for Time Series Classification with Neural Networks. PLOS ONE, 16(7), e0254841.
Jearanaitanakij, K., & Passaya, B. (2019). Predicting Short Trend of Stocks by Using Convolutional Neural Network and Candlestick Patterns. 2019 4th International Conference on Information Technology (InCIT), 159–162.
Kobayashi, S. (2018). Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations (arXiv:1805.06201). arXiv. http://arxiv.org/abs/1805.06201
Komori, Y. (2020). Convolutional Neural Network for Stock Price Prediction Using Transfer Learning (SSRN Scholarly Paper No. 3756702). https://papers.ssrn.com/abstract=3756702
Kong, A., Zhu, H., & Azencott, R. (2021). Predicting intraday jumps in stock prices using liquidity measures and technical indicators. Journal of Forecasting, 40(3), 416–438.
Kotsiantis, S., Kanellopoulos, D., & Pintelas, P. (2005). Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering, 30, 25–36.
Kusuma, R. M. I., Ho, T.-T., Kao, W.-C., Ou, Y.-Y., & Hua, K.-L. (2019). Using Deep Learning Neural Networks and Candlestick Chart Representation to Predict Stock Market (arXiv:1903.12258). arXiv. http://arxiv.org/abs/1903.12258
Lu, T.-H., Shiu, Y.-M., & Liu, T.-C. (2012). Profitable candlestick trading strategies—The evidence from a new perspective. Review of Financial Economics, 21(2), 63–68.
Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. Interspeech 2019, 2613–2617. http://arxiv.org/abs/1904.08779
Picasso, A., Merello, S., Ma, Y., Oneto, L., & Cambria, E. (2019). Technical analysis and sentiment embeddings for market trend prediction. Expert Systems with Applications, 135, 60–70.
Prado, H. A. do, Ferneda, E., Morais, L. C. R., Luiz, A. J. B., & Matsura, E. (2013). On the Effectiveness of Candlestick Chart Analysis for the Brazilian Stock Market. Procedia Computer Science, 22, 1136–1145.
Schlüter, J., & Grill, T. (2015). Exploring Data Augmentation for Improved Singing Voice Detection with Neural Networks. https://www.semanticscholar.org/paper/Exploring-Data-Augmentation-for-Improved-Singing-Schl%C3%BCter-Grill/de277b6f639192b9eae84ab30838281ed12c0bbc
Selvin, S., Vinayakumar, R., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2017). Stock price prediction using LSTM, RNN and CNN-sliding window model. 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 1643–1647.
Sezer, O. B., & Ozbayoglu, A. M. (2018). Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach. Applied Soft Computing, 70, 525–538.
Sezer, O. B., Ozbayoglu, A. M., & Dogdu, E. (2017). An Artificial Neural Network-based Stock Trading System Using Technical Analysis and Big Data Framework. Proceedings of the SouthEast Conference, 223–226. https://doi.org/10.1145/3077286.3077294
Sharma, N., Jain, V., & Mishra, A. (2018). An Analysis Of Convolutional Neural Networks For Image Classification. Procedia Computer Science, 132, 377–384.
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 60.
Sim, H., Kim, H., & Ahn, J. (2019). Is Deep Learning for Image Recognition Applicable to Stock Market Prediction? Complexity, 2019, 1–10.
Sinha, S., Mishra, S., Mishra, V., & Ahmed, T. (2022). Sector influence aware stock trend prediction using 3D convolutional neural network. Journal of King Saud University - Computer and Information Sciences, 34(4), 1511–1522.
Taylor, L., & Nitschke, G. (2018). Improving Deep Learning with Generic Data Augmentation. 2018 IEEE Symposium Series on Computational Intelligence (SSCI), 1542–1547.
Teng, X., Wang, T., Zhang, X., Lan, L., & Luo, Z. (2020). Enhancing Stock Price Trend Prediction via a Time-Sensitive Data Augmentation Method. Complexity, 2020, e6737951.
Um, T. T., Pfister, F. M. J., Pichler, D., Endo, S., Lang, M., Hirche, S., Fietzek, U., & Kulić, D. (2017). Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks. Proceedings of the 19th ACM International Conference on Multimodal Interaction, 216–220. https://doi.org/10.1145/3136755.3136817
Wang, H., Xu, J., Yan, R., Sun, C., & Chen, X. (2020). Intelligent Bearing Fault Diagnosis Using Multi-Head Attention-Based CNN. Procedia Manufacturing, 49, 112–118.
Wang, Z., & Oates, T. (2015, January 1). Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks.
Wu, H., Wang, Y., Lin, J., Yang, W., Wang, Y., & Zheng, Y. (2020). A Multi-Channel Multi-Head CNN Framework for Fault Classification in Industrial Process. 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS), 366–371.
Zheng, D., Li, H., & Zhu, X. (2015). Herding behavior in institutional investors: Evidence from China’s stock market. Journal of Multinational Financial Management, 32–33, 59–76. |