博碩士論文 110423016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.15.206.88
姓名 蘇敏宜(Min-Yi Su)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 利用預訓練語音和文本嵌入進行多模態多任務學習以預測憂鬱症嚴重程度和自殺風險
(Multimodal Multitask Learning for Depression Severity and Suicide Risk Prediction Using Pretrained Audio and Text Embeddings)
相關論文
★ 不動產仲介業銷售住宅類別之成交預測模型—以不動產仲介S公司為例★ 應用文字探勘技術建構預測客訴問題類別機器學習模型
★ 以機器學習技術建構顧客回購率預測模型:以某手工皂原料電子商務網站為例★ 以機器學習建構股價預測模型:以台灣股市為例
★ 以機器學習方法建構財務危機之預測模型:以台灣上市櫃公司為例★ 運用資料探勘技術於股票填息之預測模型:以台灣股市上市公司為例
★ 運用資料探勘技術優化 次世代防火牆規則之研究★ 應用資料探勘技術於電子病歷文本中識別相關新資訊
★ 應用深度學習於藥品後市場監督:Twitter文本分類任務★ 運用電子病歷與資料探勘技術建構腦中風病人心房顫動預測模型
★ 考量特徵選取與隨機森林之遺漏值填補技術★ 電子病歷縮寫消歧與一對多分類任務
★ 運用Meta-path與注意力機制改善個人化穿搭推薦★ 運用機器學習技術建構核保風險預測模型:以A公司為例
★ 風扇壽命預測使用大數據分析-以 X 公司為例★ 使用文字探勘與深度學習技術建置中風後肺炎之預測模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 憂鬱症是一種影響患者、家庭成員和社會的心理健康疾患,而患者的高度憂鬱嚴重度往往代表著更高的自殺風險,這突顯了準確診斷和治療的重要性。然而,在臨床上,不僅評估過程耗時,醫生與患者的態度也可能影響診療結果;在學術上,目前心理健康領域的研究多採用英語或公開資料集,且與其他語音分類領域相比,其所用的機器學習(Machine Learning, ML)技術仍有待改進。為擴大ML模型的適用性,本研究建立多模態多任務學習框架以同時預測憂鬱嚴重度和自殺風險分類任務,並設計三個實驗來辨識出兩任務最適合的預訓練嵌入,同時也探索了多任務學習(Multitask Learning, MTL)在不同嵌入下模型性能的優劣。本研究採用了中文語音資料集,內含100名未看過身心科的非憂鬱者、100名來自台灣南部某醫院的憂鬱患者之口述音檔和量表分數,前處理後所產生的語音和文本資料會被轉為預訓練嵌入以傳入模型,而在實踐多模態融合、多任務學習架構上,分別選用了串接和硬參數共享來實作。實驗結果顯示,在憂鬱嚴重度任務上以wav2vec 2.0和eHealth嵌入作為輸入的MTL模型表現最佳,AUC達0.887;而自殺風險任務中則是以HuBERT和eHealth嵌入作為輸入的MTL模型表現最佳,AUC達0.883。本研究證明了在這兩任務中採用多模態嵌入能有效提高模型性能,而MTL雖具有進一步提升性能的潛力,但在應用時需謹慎以避免負面遷移,未來有望將本文模型整合至軟體中,以快速幫助醫師進行準確診斷,並成為民眾自我評估的工具。
摘要(英) Depression is a psychological disorder that impacts patients, their families, and society. Accurate diagnosis and treatment are crucial due to the strong correlation between high depression severity and increased suicide risk. However, clinical evaluations can be time-consuming and influenced by doctors’ and patients’ attitudes. Compared to other audio classification fields, current machine learning (ML) techniques for mental health classification still require improvement. Our study aims to enhance the applicability of ML models by establishing a multimodal multitask learning (MTL) framework for classifying depression severity and suicide risk simultaneously. Three experiments were conducted to identify the most suitable pretrained embeddings for these two tasks and explore the performance of MTL with different embeddings. The dataset utilized in this study comprises Chinese audio recordings and clinical questionnaire scores collected from a sample of 100 non-depressed individuals who had never visited a psychosomatic clinic and 100 depressed patients from a hospital in southern Taiwan. After preprocessing, the audio and text data were transformed into pretrained embeddings and fed into the models. The models employed concatenation and hard parameter sharing to implement multimodal and MTL architecture. The MTL model using wav2vec 2.0 and eHealth embeddings achieved the highest performance in depression severity classification (AUC=0.887), while the model utilizing HuBERT and eHealth embeddings excelled in suicide risk classification (AUC=0.883). Our research demonstrates that employing multimodal embeddings significantly enhances model performance in these tasks. While MTL has the potential for further improvement, caution must be exercised to avoid negative transfer during its application. Integrating our proposed model into software tools can aid physicians in accurate diagnosis and serve as a self-assessment tool for the general public.
關鍵字(中) ★ 多任務學習
★ 多模態
★ 憂鬱症嚴重度
★ 自殺風險
關鍵字(英) ★ Multitask learning
★ multimodal
★ depression severity
★ suicide risk
論文目次 摘要 i
Abstract ii
Acknowledgements iii
Contents iv
List of Tables vi
List of Figures vii
1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Research objective 5
2 Literature Review 6
2.1 Depression severity and suicide risk prediction 6
2.1.1 Audio-based data analysis 11
2.1.2 Text-based data analysis 12
2.1.3 Multimodal data analysis 13
2.2 Multitask learning (MTL) and transfer learning (TL) 14
2.2.1 Multitask learning (MTL) 14
2.2.2 Transfer learning (TL) 15
3 Research Method 17
3.1 Feature extraction 17
3.1.1 wav2vec 2.0 18
3.1.2 HuBERT 18
3.1.3 Longformer 19
3.1.4 ERNIE-health (eHealth) 19
3.2 Multimodal fusion 19
3.3 Multitask learning 20
4 Experiment Evaluation 23
4.1 Dataset 23
4.2 Experiment process 24
4.3 Evaluation metrics 26
4.4 Implementation details 27
5 Experiment Results 29
5.1 Experiment 1: STL models for depression severity prediction 29
5.2 Experiment 2: STL models for suicide risk prediction 30
5.3 Experiment 3: MTL models for depression severity and suicide risk prediction 31
5.4 Discussion 34
6 Conclusion and Future Work 37
6.1 Conclusion 37
6.2 Future research 38
Reference 39
參考文獻 [1] Aich, A., & Parde, N. (2022). Are You Really Okay? A Transfer Learning-based Approach for Identification of Underlying Mental Illnesses. Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology, 89–104. https://doi.org/10.18653/v1/2022.clpsych-1.8
[2] Atmaja, B. T., Sasou, A., & Akagi, M. (2022). Survey on bimodal speech emotion recognition from acoustic and linguistic information fusion. Speech Communication, 140, 11–28. https://doi.org/10.1016/j.specom.2022.03.002
[3] Baevski, A., Zhou, H., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. Proceedings of the 34th International Conference on Neural Information Processing Systems, 12449–12460.
[4] Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2017). Multimodal Machine Learning: A Survey and Taxonomy (arXiv:1705.09406). arXiv. https://doi.org/10.48550/arXiv.1705.09406
[5] Bani-Salameh, H., Alkhatib, S. M., Abdalla, M., Al-Hami, M., Banat, R., Zyod, H., & Alkhatib, A. J. (2021). Prediction of diabetes and hypertension using multi-layer perceptron neural networks. International Journal of Modeling, Simulation, and Scientific Computing, 12(02), 2150012. https://doi.org/10.1142/S1793962321500124
[6] Barney, L. J., Griffiths, K. M., Jorm, A. F., & Christensen, H. (2006). Stigma about Depression and its Impact on Help-Seeking Intentions. Australian & New Zealand Journal of Psychiatry, 40(1), 51–54. https://doi.org/10.1080/j.1440-1614.2006.01741.x
[7] Bayerl, S. P., Wagner, D., Nöth, E., & Riedhammer, K. (2022). Detecting Dysfluencies in Stuttering Therapy Using wav2vec 2.0. Interspeech 2022, 2443–2447. https://doi.org/arXiv:2204.03417
[8] Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The Long-Document Transformer (arXiv:2004.05150). arXiv. https://doi.org/10.48550/arXiv.2004.05150
[9] Benton, A., Mitchell, M., & Hovy, D. (2017). Multi-Task Learning for Mental Health using Social Media Text (arXiv:1712.03538). arXiv. https://doi.org/10.48550/arXiv.1712.03538
[10] Bikku, T. (2020). Multi-layered deep learning perceptron approach for health risk prediction. Journal of Big Data, 7(1), 50. https://doi.org/10.1186/s40537-020-00316-7
[11] Boigne, J., Liyanage, B., & Östrem, T. (2020). Recognizing More Emotions with Less Data Using Self-supervised Transfer Learning (arXiv:2011.05585). arXiv. https://doi.org/10.48550/arXiv.2011.05585
[12] Brunier, A., & Drysdale, C. (2022, March 2). COVID-19 pandemic triggers 25% increase in prevalence of anxiety and depression worldwide. World Health Organization. https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide
[13] Burcusa, S. L., & Iacono, W. G. (2007). Risk for Recurrence in Depression. Clinical Psychology Review, 27(8), 959–985. https://doi.org/10.1016/j.cpr.2007.02.005
[14] Centers for Disease Control and Prevention. (2022, September 14). Mental Health Conditions: Depression and Anxiety. https://www.cdc.gov/tobacco/campaign/tips/diseases/depression-anxiety.html
[15] Cheng, Q., Li, T. M., Kwok, C.-L., Zhu, T., & Yip, P. S. (2017). Assessing Suicide Risk and Emotional Distress in Chinese Social Media: A Text Mining and Machine Learning Study. Journal of Medical Internet Research, 19(7), e7276. https://doi.org/10.2196/jmir.7276
[16] Clement, S., Schauman, O., Graham, T., Maggioni, F., Evans-Lacko, S., Bezborodovs, N., Morgan, C., Rüsch, N., Brown, J. S. L., & Thornicroft, G. (2014). What is the impact of mental health-related stigma on help-seeking? A systematic review of quantitative and qualitative studies. Psychological Medicine, 45(1). https://doi.org/10.1017/S0033291714000129
[17] Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. F. (2015). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 71, 10–49. https://doi.org/10.1016/j.specom.2015.03.004
[18] Dinkel, H., Wu, M., & Yu, K. (2020). Text-based depression detection on sparse data (arXiv:1904.05154). arXiv. https://doi.org/10.48550/arXiv.1904.05154
[19] Dubagunta, S. P., Vlasenko, B., & Magimai.-Doss, M. (2019). Learning Voice Source Related Information for Depression Detection. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6525–6529. https://doi.org/10.1109/ICASSP.2019.8683498
[20] Dumpala, S. H., Rempel, S., Dikaios, K., Sajjadian, M., Uher, R., & Oore, S. (2021). Estimating Severity of Depression From Acoustic Features and Embeddings of Natural Speech. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7278–7282. https://doi.org/10.1109/ICASSP39728.2021.9414129
[21] Faber, J., & Fonseca, L. M. (2014). How sample size influences research outcomes. Dental Press Journal of Orthodontics, 19(4), 27. https://doi.org/10.1590/2176-9451.19.4.027-029.ebo
[22] France, D. J., Shiavi, R. G., Silverman, S., Silverman, M., & Wilkes, M. (2000). Acoustical properties of speech as indicators of depression and suicidal risk. IEEE Transactions on Biomedical Engineering, 47(7), 829–837. https://doi.org/10.1109/10.846676
[23] Goldman, L. S., Nielsen, N. H., Champion, H. C., & for the Council on Scientific Affairs, A. M. A. (1999). Awareness, Diagnosis, and Treatment of Depression. Journal of General Internal Medicine, 14(9), 569–580. https://doi.org/10.1046/j.1525-1497.1999.03478.x
[24] Hamilton, M. (1960). A Rating Scale for Depression. Journal of Neurology, Neurosurgery & Psychiatry, 23(1), 56–62. https://doi.org/10.1136/jnnp.23.1.56
[25] He, L., & Cao, C. (2018). Automated depression analysis using convolutional neural networks from speech. Journal of Biomedical Informatics, 83, 103–111. https://doi.org/10.1016/j.jbi.2018.05.007
[26] Homan, S., Gabi, M., Klee, N., Bachmann, S., Moser, A.-M., Duri’, M., Michel, S., Bertram, A.-M., Maatz, A., Seiler, G., Stark, E., & Kleim, B. (2022). Linguistic features of suicidal thoughts and behaviors: A systematic review. Clinical Psychology Review, 95, 102161. https://doi.org/10.1016/j.cpr.2022.102161
[27] Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., & Mohamed, A. (2021). HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 3451–3460. https://doi.org/10.1109/TASLP.2021.3122291
[28] Huang, S. H., LePendu, P., Iyer, S. V., Tai-Seale, M., Carrell, D., & Shah, N. H. (2014). Toward personalizing treatment for depression: Predicting diagnosis and severity. Journal of the American Medical Informatics Association, 21(6), 1069–1075. https://doi.org/10.1136/amiajnl-2014-002733
[29] Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I., & Lungren, M. P. (2020). Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. Npj Digital Medicine, 3(1), Article 1. https://doi.org/10.1038/s41746-020-00341-z
[30] Iyer, R., Nedeljkovic, M., & Meyer, D. (2022). Using Voice Biomarkers to Classify Suicide Risk in Adult Telehealth Callers: Retrospective Observational Study. JMIR Mental Health, 9(8), e39807. https://doi.org/10.2196/39807
[31] Javanmardi, F., Tirronen, S., Kodali, M., Kadiri, S. R., & Alku, P. (2023). Wav2vec-Based Detection and Severity Level Classification of Dysarthria From Speech. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. https://doi.org/10.1109/ICASSP49357.2023.10094857
[32] Joo, J., Hwang, S., & Gallo, J. J. (2016). Death Ideation and Suicidal Ideation in a Community Sample Who Do Not Meet Criteria for Major Depression. Crisis, 37(2), 161–165. https://doi.org/10.1027/0227-5910/a000365
[33] Kalyan, K. S., & Sangeetha, S. (2020). SECNLP: A survey of embeddings in clinical natural language processing. Journal of Biomedical Informatics, 101, 103323. https://doi.org/10.1016/j.jbi.2019.103323
[34] Kendall, A., Gal, Y., & Cipolla, R. (2018). Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics (arXiv:1705.07115). arXiv. https://doi.org/10.48550/arXiv.1705.07115
[35] Khattak, F. K., Jeblee, S., Pou-Prom, C., Abdalla, M., Meaney, C., & Rudzicz, F. (2019). A survey of word embeddings for clinical text. Journal of Biomedical Informatics, 100, 100057. https://doi.org/10.1016/j.yjbinx.2019.100057
[36] Kurtz, E., Zhu, Y., Driesse, T., Tran, B., Batsis, J. A., Roth, R. M., & Liang, X. (2023). Early Detection of Cognitive Decline Using Voice Assistant Commands. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. https://doi.org/10.1109/ICASSP49357.2023.10095825
[37] Lépine, J.-P., & Briley, M. (2011). The increasing burden of depression. Neuropsychiatric Disease and Treatment, 7(Suppl 1), 3–7. https://doi.org/10.2147/NDT.S19617
[38] Lewis, S., Freeman, M., van Ommeren, M., Chisholm, D., Siegl, O. G., & Kestel, D. (2022). World mental health report: Transforming mental health for all. World Health Organization. https://www.who.int/publications-detail-redirect/9789240049338
[39] Lin, L., Chen, X., Shen, Y., & Zhang, L. (2020). Towards Automatic Depression Detection: A BiLSTM/1D CNN-Based Model. Applied Sciences, 10(23), Article 23. https://doi.org/10.3390/app10238701
[40] Lin, L.-J. (2021). Using Chief Complaint for Speech Analytics and Text Mining to Assess Depression and Suicide Risk of Patients. Master’s thesis, National Chung Cheng University. https://hdl.handle.net/11296/744pp5
[41] Makiuchi, M. R., Uto, K., & Shinoda, K. (2021). Multimodal Emotion Recognition with High-Level Speech and Text Features. 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 350–357. https://doi.org/10.1109/ASRU51503.2021.9688036
[42] Mann, J. J., Apter, A., Bertolote, J., Beautrais, A., Currier, D., Haas, A., Hegerl, U., Lonnqvist, J., Malone, K., Marusic, A., Mehlum, L., Patton, G., Phillips, M., Rutz, W., Rihmer, Z., Schmidtke, A., Shaffer, D., Silverman, M., Takahashi, Y., … Hendin, H. (2005). Suicide Prevention Strategies: A Systematic Review. JAMA, 294(16), 2064–2074. https://doi.org/10.1001/jama.294.16.2064
[43] Ministry of Health and Welfare. (2021, October 5). Gender Statistical Analysis of Suicide Reporting and Caring in 2020. 統計處. https://dep.mohw.gov.tw/DOS/cp-5112-63457-113.html
[44] Morales, M. R., & Levitan, R. (2016). Speech vs. text: A comparative analysis of features for depression detection systems. 2016 IEEE Spoken Language Technology Workshop (SLT), 136–143. https://doi.org/10.1109/SLT.2016.7846256
[45] Moreno-Agostino, D., Wu, Y.-T., Daskalopoulou, C., Hasan, M. T., Huisman, M., & Prina, M. (2021). Global trends in the prevalence and incidence of depression:a systematic review and meta-analysis. Journal of Affective Disorders, 281, 235–243. https://doi.org/10.1016/j.jad.2020.12.035
[46] National Health Service. (2021, February 3). Mental health assessments. Nhs.Uk. https://www.nhs.uk/mental-health/social-care-and-your-rights/mental-health-assessments/
[47] National Institute of Mental Health. (2021a). Chronic Illness and Mental Health: Recognizing and Treating Depression. https://www.nimh.nih.gov/health/publications/chronic-illness-mental-health
[48] National Institute of Mental Health. (2021b). Depression. National Institute of Mental Health (NIMH). https://www.nimh.nih.gov/health/publications/depression
[49] Nezu, A. M., McClure, K. S., & Nezu, C. M. (2015). The Assessment of Depression. In Treating Depression (pp. 24–51). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119114482.ch2
[50] Palanisamy, K., Singhania, D., & Yao, A. (2020). Rethinking CNN Models for Audio Classification (arXiv:2007.11154). arXiv. https://doi.org/10.48550/arXiv.2007.11154
[51] Patterson, W. M., Dohn, H. H., Bird, J., & Patterson, G. A. (1983). Evaluation of suicidal patients: The SAD PERSONS scale. Psychosomatics, 24(4), 343–349. https://doi.org/10.1016/S0033-3182(83)73213-5
[52] Pérez, A., Parapar, J., & Barreiro, Á. (2022). Automatic depression score estimation with word embedding models. Artificial Intelligence in Medicine, 132, 102380. https://doi.org/10.1016/j.artmed.2022.102380
[53] Pestian, J. P., Sorter, M., Connolly, B., Bretonnel Cohen, K., McCullumsmith, C., Gee, J. T., Morency, L.-P., Scherer, S., Rohlfs, L., & Group, the S. R. (2017). A Machine Learning Approach to Identifying the Thought Markers of Suicidal Subjects: A Prospective Multicenter Trial. Suicide and Life-Threatening Behavior, 47(1), 112–121. https://doi.org/10.1111/sltb.12312
[54] Plana-Ripoll, O., Pedersen, C. B., Holtz, Y., Benros, M. E., Dalsgaard, S., de Jonge, P., Fan, C. C., Degenhardt, L., Ganna, A., Greve, A. N., Gunn, J., Iburg, K. M., Kessing, L. V., Lee, B. K., Lim, C. C. W., Mors, O., Nordentoft, M., Prior, A., Roest, A. M., … McGrath, J. J. (2019). Exploring Comorbidity Within Mental Disorders Among a Danish National Population. JAMA Psychiatry, 76(3), 259–270. https://doi.org/10.1001/jamapsychiatry.2018.3658
[55] Qureshi, S. A., Saha, S., Hasanuzzaman, M., & Dias, G. (2019). Multitask Representation Learning for Multimodal Estimation of Depression Level. IEEE Intelligent Systems, 34(5), 45–52. https://doi.org/10.1109/MIS.2019.2925204
[56] Ramachandram, D., & Taylor, G. W. (2017). Deep Multimodal Learning: A Survey on Recent Advances and Trends. IEEE Signal Processing Magazine, 34(6), 96–108. https://doi.org/10.1109/MSP.2017.2738401
[57] Ramírez-Cifuentes, D., Freire, A., Baeza-Yates, R., Puntí, J., Medina-Bravo, P., Velazquez, D. A., Gonfaus, J. M., & Gonzàlez, J. (2020). Detection of Suicidal Ideation on Social Media: Multimodal, Relational, and Behavioral Analysis. Journal of Medical Internet Research, 22(7), e17758. https://doi.org/10.2196/17758
[58] Razavi, R., Gharipour, A., & Gharipour, M. (2020). Depression screening using mobile phone usage metadata: A machine learning approach. Journal of the American Medical Informatics Association, 27(4), 522–530. https://doi.org/10.1093/jamia/ocz221
[59] Rejaibi, E., Komaty, A., Meriaudeau, F., Agrebi, S., & Othmani, A. (2020). MFCC-based Recurrent Neural Network for Automatic Clinical Depression Recognition and Assessment from Speech (arXiv:1909.07208). arXiv. https://doi.org/10.48550/arXiv.1909.07208
[60] Rodrigues Makiuchi, M., Warnita, T., Uto, K., & Shinoda, K. (2019). Multimodal Fusion of BERT-CNN and Gated CNN Representations for Depression Detection. Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, 55–63. https://doi.org/10.1145/3347320.3357694
[61] Ross, A. (2009). Fusion, Feature-Level. In S. Z. Li & A. Jain (Eds.), Encyclopedia of Biometrics (pp. 597–602). Springer US. https://doi.org/10.1007/978-0-387-73003-5_157
[62] Ruder, S. (2017). An Overview of Multi-Task Learning in Deep Neural Networks (arXiv:1706.05098). arXiv. https://doi.org/10.48550/arXiv.1706.05098
[63] Sardari, S., Nakisa, B., Rastgoo, M. N., & Eklund, P. (2022). Audio based depression detection using Convolutional Autoencoder. Expert Systems with Applications, 189, 116076. https://doi.org/10.1016/j.eswa.2021.116076
[64] Schwartz-Lifshitz, M., Zalsman, G., Giner, L., & Oquendo, M. A. (2012). Can We Really Prevent Suicide? Current Psychiatry Reports, 14(6), 624–633. https://doi.org/10.1007/s11920-012-0318-3
[65] Smith, K. (2014). Mental health: A world of depression. Nature, 515(7526), Article 7526. https://doi.org/10.1038/515180a
[66] Smith, K. (2019, April 13). What is a “Psych Evaluation?” Talkspace. https://www.talkspace.com/blog/what-is-a-psych-evaluation/
[67] Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., & Van Gool, L. (2021). Multi-Task Learning for Dense Prediction Tasks: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2021.3054719
[68] Wang, Q., Dai, S., Xu, B., Lyu, Y., Zhu, Y., Wu, H., & Wang, H. (2022). Building Chinese Biomedical Language Models via Multi-Level Text Discrimination (arXiv:2110.07244). arXiv. https://doi.org/10.48550/arXiv.2110.07244
[69] Wang, Y., Liu, S., Afzal, N., Rastegar-Mojarad, M., Wang, L., Shen, F., Kingsbury, P., & Liu, H. (2018). A comparison of word embeddings for the biomedical natural language processing. Journal of Biomedical Informatics, 87, 12–20. https://doi.org/10.1016/j.jbi.2018.09.008
[70] World Health Organization. (2021, September 13). Depression. https://www.who.int/news-room/fact-sheets/detail/depression
[71] Wu, P., Wang, R., Lin, H., Zhang, F., Tu, J., & Sun, M. (2022, June 21). Automatic depression recognition by intelligent speech signal processing: A systematic survey. https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cit2.12113
[72] Yang, S., Chi, P.-H., Chuang, Y.-S., Lai, C.-I. J., Lakhotia, K., Lin, Y. Y., Liu, A. T., Shi, J., Chang, X., Lin, G.-T., Huang, T.-H., Tseng, W.-C., Lee, K., Liu, D.-R., Huang, Z., Dong, S., Li, S.-W., Watanabe, S., Mohamed, A., & Lee, H. (2021). SUPERB: Speech processing Universal PERformance Benchmark (arXiv:2105.01051). arXiv. https://doi.org/10.48550/arXiv.2105.01051
[73] Yang, T., Li, F., Ji, D., Liang, X., Xie, T., Tian, S., Li, B., & Liang, P. (2021). Fine-grained depression analysis based on Chinese micro-blog reviews. Information Processing & Management, 58(6), 102681. https://doi.org/10.1016/j.ipm.2021.102681
[74] Zhang, Y., & Yang, Q. (2022). A Survey on Multi-Task Learning. IEEE Transactions on Knowledge and Data Engineering, 34(12), 5586–5609. https://doi.org/10.1109/TKDE.2021.3070203
[75] Zhao, Z., Bao, Z., Zhang, Z., Deng, J., Cummins, N., Wang, H., Tao, J., & Schuller, B. (2020). Automatic Assessment of Depression From Speech via a Hierarchical Attention Transfer Network and Attention Autoencoders. IEEE Journal of Selected Topics in Signal Processing, 14(2), 423–434. https://doi.org/10.1109/JSTSP.2019.2955012
[76] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1), 43–76. https://doi.org/10.1109/JPROC.2020.3004555
[77] Zimmerman, M., Martinez, J. H., Young, D., Chelminski, I., & Dalrymple, K. (2013). Severity classification on the Hamilton Depression Rating Scale. Journal of Affective Disorders, 150(2), 384–388. https://doi.org/10.1016/j.jad.2013.04.028
指導教授 胡雅涵(Ya-Han Hu) 審核日期 2023-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明