參考文獻 |
[1] Aich, A., & Parde, N. (2022). Are You Really Okay? A Transfer Learning-based Approach for Identification of Underlying Mental Illnesses. Proceedings of the Eighth Workshop on Computational Linguistics and Clinical Psychology, 89–104. https://doi.org/10.18653/v1/2022.clpsych-1.8
[2] Atmaja, B. T., Sasou, A., & Akagi, M. (2022). Survey on bimodal speech emotion recognition from acoustic and linguistic information fusion. Speech Communication, 140, 11–28. https://doi.org/10.1016/j.specom.2022.03.002
[3] Baevski, A., Zhou, H., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. Proceedings of the 34th International Conference on Neural Information Processing Systems, 12449–12460.
[4] Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2017). Multimodal Machine Learning: A Survey and Taxonomy (arXiv:1705.09406). arXiv. https://doi.org/10.48550/arXiv.1705.09406
[5] Bani-Salameh, H., Alkhatib, S. M., Abdalla, M., Al-Hami, M., Banat, R., Zyod, H., & Alkhatib, A. J. (2021). Prediction of diabetes and hypertension using multi-layer perceptron neural networks. International Journal of Modeling, Simulation, and Scientific Computing, 12(02), 2150012. https://doi.org/10.1142/S1793962321500124
[6] Barney, L. J., Griffiths, K. M., Jorm, A. F., & Christensen, H. (2006). Stigma about Depression and its Impact on Help-Seeking Intentions. Australian & New Zealand Journal of Psychiatry, 40(1), 51–54. https://doi.org/10.1080/j.1440-1614.2006.01741.x
[7] Bayerl, S. P., Wagner, D., Nöth, E., & Riedhammer, K. (2022). Detecting Dysfluencies in Stuttering Therapy Using wav2vec 2.0. Interspeech 2022, 2443–2447. https://doi.org/arXiv:2204.03417
[8] Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The Long-Document Transformer (arXiv:2004.05150). arXiv. https://doi.org/10.48550/arXiv.2004.05150
[9] Benton, A., Mitchell, M., & Hovy, D. (2017). Multi-Task Learning for Mental Health using Social Media Text (arXiv:1712.03538). arXiv. https://doi.org/10.48550/arXiv.1712.03538
[10] Bikku, T. (2020). Multi-layered deep learning perceptron approach for health risk prediction. Journal of Big Data, 7(1), 50. https://doi.org/10.1186/s40537-020-00316-7
[11] Boigne, J., Liyanage, B., & Östrem, T. (2020). Recognizing More Emotions with Less Data Using Self-supervised Transfer Learning (arXiv:2011.05585). arXiv. https://doi.org/10.48550/arXiv.2011.05585
[12] Brunier, A., & Drysdale, C. (2022, March 2). COVID-19 pandemic triggers 25% increase in prevalence of anxiety and depression worldwide. World Health Organization. https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-anxiety-and-depression-worldwide
[13] Burcusa, S. L., & Iacono, W. G. (2007). Risk for Recurrence in Depression. Clinical Psychology Review, 27(8), 959–985. https://doi.org/10.1016/j.cpr.2007.02.005
[14] Centers for Disease Control and Prevention. (2022, September 14). Mental Health Conditions: Depression and Anxiety. https://www.cdc.gov/tobacco/campaign/tips/diseases/depression-anxiety.html
[15] Cheng, Q., Li, T. M., Kwok, C.-L., Zhu, T., & Yip, P. S. (2017). Assessing Suicide Risk and Emotional Distress in Chinese Social Media: A Text Mining and Machine Learning Study. Journal of Medical Internet Research, 19(7), e7276. https://doi.org/10.2196/jmir.7276
[16] Clement, S., Schauman, O., Graham, T., Maggioni, F., Evans-Lacko, S., Bezborodovs, N., Morgan, C., Rüsch, N., Brown, J. S. L., & Thornicroft, G. (2014). What is the impact of mental health-related stigma on help-seeking? A systematic review of quantitative and qualitative studies. Psychological Medicine, 45(1). https://doi.org/10.1017/S0033291714000129
[17] Cummins, N., Scherer, S., Krajewski, J., Schnieder, S., Epps, J., & Quatieri, T. F. (2015). A review of depression and suicide risk assessment using speech analysis. Speech Communication, 71, 10–49. https://doi.org/10.1016/j.specom.2015.03.004
[18] Dinkel, H., Wu, M., & Yu, K. (2020). Text-based depression detection on sparse data (arXiv:1904.05154). arXiv. https://doi.org/10.48550/arXiv.1904.05154
[19] Dubagunta, S. P., Vlasenko, B., & Magimai.-Doss, M. (2019). Learning Voice Source Related Information for Depression Detection. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6525–6529. https://doi.org/10.1109/ICASSP.2019.8683498
[20] Dumpala, S. H., Rempel, S., Dikaios, K., Sajjadian, M., Uher, R., & Oore, S. (2021). Estimating Severity of Depression From Acoustic Features and Embeddings of Natural Speech. ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 7278–7282. https://doi.org/10.1109/ICASSP39728.2021.9414129
[21] Faber, J., & Fonseca, L. M. (2014). How sample size influences research outcomes. Dental Press Journal of Orthodontics, 19(4), 27. https://doi.org/10.1590/2176-9451.19.4.027-029.ebo
[22] France, D. J., Shiavi, R. G., Silverman, S., Silverman, M., & Wilkes, M. (2000). Acoustical properties of speech as indicators of depression and suicidal risk. IEEE Transactions on Biomedical Engineering, 47(7), 829–837. https://doi.org/10.1109/10.846676
[23] Goldman, L. S., Nielsen, N. H., Champion, H. C., & for the Council on Scientific Affairs, A. M. A. (1999). Awareness, Diagnosis, and Treatment of Depression. Journal of General Internal Medicine, 14(9), 569–580. https://doi.org/10.1046/j.1525-1497.1999.03478.x
[24] Hamilton, M. (1960). A Rating Scale for Depression. Journal of Neurology, Neurosurgery & Psychiatry, 23(1), 56–62. https://doi.org/10.1136/jnnp.23.1.56
[25] He, L., & Cao, C. (2018). Automated depression analysis using convolutional neural networks from speech. Journal of Biomedical Informatics, 83, 103–111. https://doi.org/10.1016/j.jbi.2018.05.007
[26] Homan, S., Gabi, M., Klee, N., Bachmann, S., Moser, A.-M., Duri’, M., Michel, S., Bertram, A.-M., Maatz, A., Seiler, G., Stark, E., & Kleim, B. (2022). Linguistic features of suicidal thoughts and behaviors: A systematic review. Clinical Psychology Review, 95, 102161. https://doi.org/10.1016/j.cpr.2022.102161
[27] Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., & Mohamed, A. (2021). HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 3451–3460. https://doi.org/10.1109/TASLP.2021.3122291
[28] Huang, S. H., LePendu, P., Iyer, S. V., Tai-Seale, M., Carrell, D., & Shah, N. H. (2014). Toward personalizing treatment for depression: Predicting diagnosis and severity. Journal of the American Medical Informatics Association, 21(6), 1069–1075. https://doi.org/10.1136/amiajnl-2014-002733
[29] Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I., & Lungren, M. P. (2020). Fusion of medical imaging and electronic health records using deep learning: A systematic review and implementation guidelines. Npj Digital Medicine, 3(1), Article 1. https://doi.org/10.1038/s41746-020-00341-z
[30] Iyer, R., Nedeljkovic, M., & Meyer, D. (2022). Using Voice Biomarkers to Classify Suicide Risk in Adult Telehealth Callers: Retrospective Observational Study. JMIR Mental Health, 9(8), e39807. https://doi.org/10.2196/39807
[31] Javanmardi, F., Tirronen, S., Kodali, M., Kadiri, S. R., & Alku, P. (2023). Wav2vec-Based Detection and Severity Level Classification of Dysarthria From Speech. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. https://doi.org/10.1109/ICASSP49357.2023.10094857
[32] Joo, J., Hwang, S., & Gallo, J. J. (2016). Death Ideation and Suicidal Ideation in a Community Sample Who Do Not Meet Criteria for Major Depression. Crisis, 37(2), 161–165. https://doi.org/10.1027/0227-5910/a000365
[33] Kalyan, K. S., & Sangeetha, S. (2020). SECNLP: A survey of embeddings in clinical natural language processing. Journal of Biomedical Informatics, 101, 103323. https://doi.org/10.1016/j.jbi.2019.103323
[34] Kendall, A., Gal, Y., & Cipolla, R. (2018). Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics (arXiv:1705.07115). arXiv. https://doi.org/10.48550/arXiv.1705.07115
[35] Khattak, F. K., Jeblee, S., Pou-Prom, C., Abdalla, M., Meaney, C., & Rudzicz, F. (2019). A survey of word embeddings for clinical text. Journal of Biomedical Informatics, 100, 100057. https://doi.org/10.1016/j.yjbinx.2019.100057
[36] Kurtz, E., Zhu, Y., Driesse, T., Tran, B., Batsis, J. A., Roth, R. M., & Liang, X. (2023). Early Detection of Cognitive Decline Using Voice Assistant Commands. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5. https://doi.org/10.1109/ICASSP49357.2023.10095825
[37] Lépine, J.-P., & Briley, M. (2011). The increasing burden of depression. Neuropsychiatric Disease and Treatment, 7(Suppl 1), 3–7. https://doi.org/10.2147/NDT.S19617
[38] Lewis, S., Freeman, M., van Ommeren, M., Chisholm, D., Siegl, O. G., & Kestel, D. (2022). World mental health report: Transforming mental health for all. World Health Organization. https://www.who.int/publications-detail-redirect/9789240049338
[39] Lin, L., Chen, X., Shen, Y., & Zhang, L. (2020). Towards Automatic Depression Detection: A BiLSTM/1D CNN-Based Model. Applied Sciences, 10(23), Article 23. https://doi.org/10.3390/app10238701
[40] Lin, L.-J. (2021). Using Chief Complaint for Speech Analytics and Text Mining to Assess Depression and Suicide Risk of Patients. Master’s thesis, National Chung Cheng University. https://hdl.handle.net/11296/744pp5
[41] Makiuchi, M. R., Uto, K., & Shinoda, K. (2021). Multimodal Emotion Recognition with High-Level Speech and Text Features. 2021 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 350–357. https://doi.org/10.1109/ASRU51503.2021.9688036
[42] Mann, J. J., Apter, A., Bertolote, J., Beautrais, A., Currier, D., Haas, A., Hegerl, U., Lonnqvist, J., Malone, K., Marusic, A., Mehlum, L., Patton, G., Phillips, M., Rutz, W., Rihmer, Z., Schmidtke, A., Shaffer, D., Silverman, M., Takahashi, Y., … Hendin, H. (2005). Suicide Prevention Strategies: A Systematic Review. JAMA, 294(16), 2064–2074. https://doi.org/10.1001/jama.294.16.2064
[43] Ministry of Health and Welfare. (2021, October 5). Gender Statistical Analysis of Suicide Reporting and Caring in 2020. 統計處. https://dep.mohw.gov.tw/DOS/cp-5112-63457-113.html
[44] Morales, M. R., & Levitan, R. (2016). Speech vs. text: A comparative analysis of features for depression detection systems. 2016 IEEE Spoken Language Technology Workshop (SLT), 136–143. https://doi.org/10.1109/SLT.2016.7846256
[45] Moreno-Agostino, D., Wu, Y.-T., Daskalopoulou, C., Hasan, M. T., Huisman, M., & Prina, M. (2021). Global trends in the prevalence and incidence of depression:a systematic review and meta-analysis. Journal of Affective Disorders, 281, 235–243. https://doi.org/10.1016/j.jad.2020.12.035
[46] National Health Service. (2021, February 3). Mental health assessments. Nhs.Uk. https://www.nhs.uk/mental-health/social-care-and-your-rights/mental-health-assessments/
[47] National Institute of Mental Health. (2021a). Chronic Illness and Mental Health: Recognizing and Treating Depression. https://www.nimh.nih.gov/health/publications/chronic-illness-mental-health
[48] National Institute of Mental Health. (2021b). Depression. National Institute of Mental Health (NIMH). https://www.nimh.nih.gov/health/publications/depression
[49] Nezu, A. M., McClure, K. S., & Nezu, C. M. (2015). The Assessment of Depression. In Treating Depression (pp. 24–51). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119114482.ch2
[50] Palanisamy, K., Singhania, D., & Yao, A. (2020). Rethinking CNN Models for Audio Classification (arXiv:2007.11154). arXiv. https://doi.org/10.48550/arXiv.2007.11154
[51] Patterson, W. M., Dohn, H. H., Bird, J., & Patterson, G. A. (1983). Evaluation of suicidal patients: The SAD PERSONS scale. Psychosomatics, 24(4), 343–349. https://doi.org/10.1016/S0033-3182(83)73213-5
[52] Pérez, A., Parapar, J., & Barreiro, Á. (2022). Automatic depression score estimation with word embedding models. Artificial Intelligence in Medicine, 132, 102380. https://doi.org/10.1016/j.artmed.2022.102380
[53] Pestian, J. P., Sorter, M., Connolly, B., Bretonnel Cohen, K., McCullumsmith, C., Gee, J. T., Morency, L.-P., Scherer, S., Rohlfs, L., & Group, the S. R. (2017). A Machine Learning Approach to Identifying the Thought Markers of Suicidal Subjects: A Prospective Multicenter Trial. Suicide and Life-Threatening Behavior, 47(1), 112–121. https://doi.org/10.1111/sltb.12312
[54] Plana-Ripoll, O., Pedersen, C. B., Holtz, Y., Benros, M. E., Dalsgaard, S., de Jonge, P., Fan, C. C., Degenhardt, L., Ganna, A., Greve, A. N., Gunn, J., Iburg, K. M., Kessing, L. V., Lee, B. K., Lim, C. C. W., Mors, O., Nordentoft, M., Prior, A., Roest, A. M., … McGrath, J. J. (2019). Exploring Comorbidity Within Mental Disorders Among a Danish National Population. JAMA Psychiatry, 76(3), 259–270. https://doi.org/10.1001/jamapsychiatry.2018.3658
[55] Qureshi, S. A., Saha, S., Hasanuzzaman, M., & Dias, G. (2019). Multitask Representation Learning for Multimodal Estimation of Depression Level. IEEE Intelligent Systems, 34(5), 45–52. https://doi.org/10.1109/MIS.2019.2925204
[56] Ramachandram, D., & Taylor, G. W. (2017). Deep Multimodal Learning: A Survey on Recent Advances and Trends. IEEE Signal Processing Magazine, 34(6), 96–108. https://doi.org/10.1109/MSP.2017.2738401
[57] Ramírez-Cifuentes, D., Freire, A., Baeza-Yates, R., Puntí, J., Medina-Bravo, P., Velazquez, D. A., Gonfaus, J. M., & Gonzàlez, J. (2020). Detection of Suicidal Ideation on Social Media: Multimodal, Relational, and Behavioral Analysis. Journal of Medical Internet Research, 22(7), e17758. https://doi.org/10.2196/17758
[58] Razavi, R., Gharipour, A., & Gharipour, M. (2020). Depression screening using mobile phone usage metadata: A machine learning approach. Journal of the American Medical Informatics Association, 27(4), 522–530. https://doi.org/10.1093/jamia/ocz221
[59] Rejaibi, E., Komaty, A., Meriaudeau, F., Agrebi, S., & Othmani, A. (2020). MFCC-based Recurrent Neural Network for Automatic Clinical Depression Recognition and Assessment from Speech (arXiv:1909.07208). arXiv. https://doi.org/10.48550/arXiv.1909.07208
[60] Rodrigues Makiuchi, M., Warnita, T., Uto, K., & Shinoda, K. (2019). Multimodal Fusion of BERT-CNN and Gated CNN Representations for Depression Detection. Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, 55–63. https://doi.org/10.1145/3347320.3357694
[61] Ross, A. (2009). Fusion, Feature-Level. In S. Z. Li & A. Jain (Eds.), Encyclopedia of Biometrics (pp. 597–602). Springer US. https://doi.org/10.1007/978-0-387-73003-5_157
[62] Ruder, S. (2017). An Overview of Multi-Task Learning in Deep Neural Networks (arXiv:1706.05098). arXiv. https://doi.org/10.48550/arXiv.1706.05098
[63] Sardari, S., Nakisa, B., Rastgoo, M. N., & Eklund, P. (2022). Audio based depression detection using Convolutional Autoencoder. Expert Systems with Applications, 189, 116076. https://doi.org/10.1016/j.eswa.2021.116076
[64] Schwartz-Lifshitz, M., Zalsman, G., Giner, L., & Oquendo, M. A. (2012). Can We Really Prevent Suicide? Current Psychiatry Reports, 14(6), 624–633. https://doi.org/10.1007/s11920-012-0318-3
[65] Smith, K. (2014). Mental health: A world of depression. Nature, 515(7526), Article 7526. https://doi.org/10.1038/515180a
[66] Smith, K. (2019, April 13). What is a “Psych Evaluation?” Talkspace. https://www.talkspace.com/blog/what-is-a-psych-evaluation/
[67] Vandenhende, S., Georgoulis, S., Van Gansbeke, W., Proesmans, M., Dai, D., & Van Gool, L. (2021). Multi-Task Learning for Dense Prediction Tasks: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2021.3054719
[68] Wang, Q., Dai, S., Xu, B., Lyu, Y., Zhu, Y., Wu, H., & Wang, H. (2022). Building Chinese Biomedical Language Models via Multi-Level Text Discrimination (arXiv:2110.07244). arXiv. https://doi.org/10.48550/arXiv.2110.07244
[69] Wang, Y., Liu, S., Afzal, N., Rastegar-Mojarad, M., Wang, L., Shen, F., Kingsbury, P., & Liu, H. (2018). A comparison of word embeddings for the biomedical natural language processing. Journal of Biomedical Informatics, 87, 12–20. https://doi.org/10.1016/j.jbi.2018.09.008
[70] World Health Organization. (2021, September 13). Depression. https://www.who.int/news-room/fact-sheets/detail/depression
[71] Wu, P., Wang, R., Lin, H., Zhang, F., Tu, J., & Sun, M. (2022, June 21). Automatic depression recognition by intelligent speech signal processing: A systematic survey. https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cit2.12113
[72] Yang, S., Chi, P.-H., Chuang, Y.-S., Lai, C.-I. J., Lakhotia, K., Lin, Y. Y., Liu, A. T., Shi, J., Chang, X., Lin, G.-T., Huang, T.-H., Tseng, W.-C., Lee, K., Liu, D.-R., Huang, Z., Dong, S., Li, S.-W., Watanabe, S., Mohamed, A., & Lee, H. (2021). SUPERB: Speech processing Universal PERformance Benchmark (arXiv:2105.01051). arXiv. https://doi.org/10.48550/arXiv.2105.01051
[73] Yang, T., Li, F., Ji, D., Liang, X., Xie, T., Tian, S., Li, B., & Liang, P. (2021). Fine-grained depression analysis based on Chinese micro-blog reviews. Information Processing & Management, 58(6), 102681. https://doi.org/10.1016/j.ipm.2021.102681
[74] Zhang, Y., & Yang, Q. (2022). A Survey on Multi-Task Learning. IEEE Transactions on Knowledge and Data Engineering, 34(12), 5586–5609. https://doi.org/10.1109/TKDE.2021.3070203
[75] Zhao, Z., Bao, Z., Zhang, Z., Deng, J., Cummins, N., Wang, H., Tao, J., & Schuller, B. (2020). Automatic Assessment of Depression From Speech via a Hierarchical Attention Transfer Network and Attention Autoencoders. IEEE Journal of Selected Topics in Signal Processing, 14(2), 423–434. https://doi.org/10.1109/JSTSP.2019.2955012
[76] Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). A Comprehensive Survey on Transfer Learning. Proceedings of the IEEE, 109(1), 43–76. https://doi.org/10.1109/JPROC.2020.3004555
[77] Zimmerman, M., Martinez, J. H., Young, D., Chelminski, I., & Dalrymple, K. (2013). Severity classification on the Hamilton Depression Rating Scale. Journal of Affective Disorders, 150(2), 384–388. https://doi.org/10.1016/j.jad.2013.04.028 |