參考文獻 |
Mia (2022)。趨勢科技 2023 年度測預:遠端上班資安風險增加,駭客從勒贖轉為賣工具、攻擊平台。INSIDE。https://www.inside.com.tw/article/30207-2023-security。最後瀏覽日期:2023年4月30日
安迪亞(2020)。低功率且易失封包的物聯網環境中之網路攻擊行為偵測。碩士論文。國立臺灣大學。
林芷圓 (2022)。2023年5大資安威脅公開,手法更難纏、贖金更多!怎麼辦?企業有3大解方。數位時代。https://www.bnext.com.tw/article/72746/fortinet-cyber-threat-predictions-for-2023。最後瀏覽日期:2023年4月30日
許鈺屏 (2023)。人工智慧是什麼?。未來城市。https://futurecity.cw.com.tw/article/2228。最後瀏覽日期:2023年4月30日
羅正漢 (2022,2月9日)。2021年國內上市櫃公司至少14件資安事件重大訊息,平均每月一起。iThome。https://www.ithome.com.tw/news/149271。最後瀏覽日期:2023年4月30日
Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., & Seidl, T. (2010, September). Moa: Massive online analysis, a framework for stream classification and clustering. In Proceedings of the first workshop on applications of pattern analysis (pp. 44-50). PMLR.
Buczak, A. L., & Guven, E. (2016). A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection. IEEE Communications Surveys & Tutorials, 18(2), 1153–1176. https://doi.org/10.1109/COMST.2015.2494502
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
CrowdStrike. (2022). What is IoT Security? Tips To Secure IoT Devices | CrowdStrike. Crowdstrike.Com. https://www.crowdstrike.com/cybersecurity-101/internet-of-things-iot-security/
Fortinet. (2022). Cyber Threat Predictions for 2023. Fortinet. https://www.fortinet.com/tw/corporate/about-us/newsroom/press-releases/2022/fortiguard-labs-predicts-convergence-of-advanced-persistent-threat-methods-with-cybercrime0.html
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.
He, H., & Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on knowledge and data engineering, 21(9), 1263-1284.
Karatas, G., Demir, O., & Sahingoz, O. K. (2020). Increasing the Performance of Machine Learning-Based IDSs on an Imbalanced and Up-to-Date Dataset. IEEE Access, 8, 32150–32162. https://doi.org/10.1109/ACCESS.2020.2973219
Leevy, J. L., & Khoshgoftaar, T. M. (2020). A survey and analysis of intrusion detection models based on CSE-CIC-IDS2018 Big Data. Journal of Big Data, 7(1), 104. https://doi.org/10.1186/s40537-020-00382-x
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18-22.
Mike Thomas. (2023). 8 Risks and Dangers of Artificial Intelligence to Know Built In. https://builtin.com/artificial-intelligence/risks-of-artificial-intelligence
Niu, Y., Chen, C., Zhang, X., Zhou, X., & Liu, H. (2022). Application of a New Feature Generation Algorithm in Intrusion Detection System. Wireless Communications and Mobile Computing, 2022, e3794579. https://doi.org/10.1155/2022/3794579
Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507–2517. https://doi.org/10.1093/bioinformatics/btm344
Samuel Greengard. (2023). Internet of Things (IoT) Description, History, Examples, & Privacy Concerns Britannica. https://www.britannica.com/science/Internet-of-Things
Sharafaldin, I., Habibi Lashkari, A., & Ghorbani, A. A. (2018). Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. Proceedings of the 4th International Conference on Information Systems Security and Privacy, 108–116. https://doi.org/10.5220/0006639801080116
Trend Micro Research. (2023). Rethinking Tactics: Annual Cybersecurity Roundup 2022. Trend Micro. https://www.trendmicro.com/vinfo/tw/security/research-and-analysis/threat-reports/roundup/rethinking-tactics-annual-cybersecurity-roundup-2022
World Economic Forum. (2022). Global Risks Report 2022. World Economic Forum. https://www.weforum.org/reports/global-risks-report-2022/
Yang, Z., Liu, X., Li, T., Wu, D., Wang, J., Zhao, Y., & Han, H. (2022). A systematic literature review of methods and datasets for anomaly-based network intrusion detection. Computers & Security, 116, 102675. https://doi.org/10.1016/j.cose.2022.102675
Zoppi, T., & Ceccarelli, A. (2021). Detect Adversarial Attacks Against Deep Neural Networks With GPU Monitoring. IEEE Access, 9, 150579-150591. |