參考文獻 |
[1]Antonio, N., De Almeida, A., & Nunes, L. (2017). Predicting hotel booking cancellations to decrease uncertainty and increase revenue. Tourism & Management Studies, 13(2), 25-39.
[2]Adil, M., Ansari, M. F., Alahmadi, A., Wu, J. Z., & Chakrabortty, R. K. (2021). Solving the problem of class imbalance in the prediction of hotel cancelations: A hybridized machine learning approach. Processes, 9(10), 1713.
[3]Antonio, N., de Almeida, A., & Nunes, L. (2019). Big data in hotel revenue management: Exploring cancellation drivers to gain insights into booking cancellation behavior. Cornell Hospitality Quarterly, 60(4), 298-319.
[4]Antonio, N., De Almeida, A., & Nunes, L. (2017). Predicting hotel booking cancellations to decrease uncertainty and increase revenue. Tourism & Management Studies, 13(2), 25-39.
[5]Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937-1967.
[6]Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning research, 13(2).
[7]Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M. A. (2019). Single and multi-sequence deep learning models for short and medium term electric load forecasting. Energies, 12(1), 149.
[8]Bi, J. W., Liu, Y., & Li, H. (2020). Daily tourism volume forecasting for tourist attractions. Annals of Tourism Research, 83, 102923.
[9]Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
[10]Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.
[11]Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.
[12]Chen, S., Ngai, E. W., Ku, Y., Xu, Z., Gou, X., & Zhang, C. (2023). Prediction of hotel booking cancellations: Integration of machine learning and probability model based on interpretable feature interaction. Decision Support Systems, 113959.
[13]Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation.arXiv preprint arXiv:1406.1078.
[14]Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).
[15]Chiang, W.-C., Chen, J. C., & Xu, X. (2007). An overview of research on revenue management: current issues and future research. International Journal of Revenue Management, 1(1), 97–128.
[16]Chen, C., & Schwartz, Z. (2008). Room rate patterns and customers′ propensity to book a hotel room. Journal of Hospitality & Tourism Research, 32(3), 287-306.
[17]Claveria, O., Monte, E., & Torra, S. (2015). Tourism demand forecasting with neural network models: different ways of treating information. International Journal of Tourism Research, 17(5), 492-500.
[18]Chow, W. S., Shyu, J. C., & Wang, K. C. (1998). Developing a forecast system for hotel occupancy rate using integrated ARIMA models. Journal of international hospitality, leisure & tourism management, 1(3), 55-80.
[19]Divino, J. A., & McAleer, M. (2010). Modelling and forecasting daily international mass tourism to Peru. Tourism Management, 31(6), 846-854.
[20]Fotiadis, A., Polyzos, S., & Huan, T. C. T. (2021). The good, the bad and the ugly on COVID-19 tourism recovery. Annals of tourism research, 87, 103117.
[21]Falk, M., & Vieru, M. (2018). Modelling the cancellation behaviour of hotel guests. International Journal of Contemporary Hospitality Management.
[22]Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
[23]Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., & Zeng, W. (2019). Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agricultural water management, 225, 105758.
[24]Gelbart, M. A., Snoek, J., & Adams, R. P. (2014). Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607.
[25]Garnett, R. (2023). Bayesian Optimization. 英國: Cambridge University Press.
[26]Goel, H., Melnyk, I., Oza, N., Matthews, B., & Banerjee, A. (2016). Multivariate aviation time series modeling: VARs vs. LSTMs.
Unpublished manuscript Retrieved from https://www%20semanticscholar% 20org/paper/Multivariate-Aviation-Time-Series-Modeling.
[27]Guadix, J., Cortés, P., Onieva, L., & Muñuzuri, J. (2010). Technology revenue management system for customer groups in hotels. Journal of Business Research, 63(5), 519-527.
[28] Guo, X., Dong, Y., & Ling, L. (2016). Customer perspective on overbooking: The failure of customers to enjoy their reserved services, accidental or intended?. Journal of Air Transport Management, 53, 65-72.
[29] Giglio, S., Bertacchini, F., Bilotta, E., & Pantano, P. (2019). Using social media to identify tourism attractiveness in six Italian cities. Tourism management, 72, 306-312.
[30]Huang, L., & Zheng, W. (2021). Novel deep learning approach for forecasting daily hotel demand with agglomeration effect. International Journal of Hospitality Management, 98, 103038.
[31]Hansun, S. (2013, November). A new approach of moving average method in time series analysis. In 2013 conference on new media studies (CoNMedia) (pp. 1-4). IEEE.
[32]Hayes, D. K., & Miller, A. A. (2011). Revenue Management for the Hospitality Industry. Forlag John Wiley & Sons. Inc., Hoboken, New Jersey.
[33]Hueglin, C., & Vannotti, F. (2001, August). Data mining techniques to improve forecast accuracy in airline business. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 438-442).
[34]Hu, Y. C., Jiang, P., & Lee, P. C. (2019). Forecasting tourism demand by incorporating neural networks into Grey–Markov models. Journal of the Operational Research Society, 70(1), 12-20.
[35]Hayes, D. K., Hayes, J. D., & Hayes, P. A. (2021). Revenue management for the hospitality industry. John Wiley & Sons.
[36]Hueglin, C., & Vannotti, F. (2001, August). Data mining techniques to improve forecast accuracy in airline business. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 438-442).
[37]Huang, L., & Zheng, W. (2021). Novel deep learning approach for
forecasting daily hotel demand with agglomeration effect. International Journal of Hospitality Management, 98, 103038.
[38]Islek, I., & Oguducu, S. G. (2015, June). A retail demand forecasting model based on data mining techniques. In 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE) (pp. 55-60). IEEE.
[39]Ivanov, S. (2014). Hotel revenue management: From theory to practice. Zangador.
[40]Jannes klaas. (2019). Machine Learning for Finance: Principles and Practice for Financial Insiders (pp. 456). Packt Publishing Ltd.
[41]Jin, X. B., Zheng, W. Z., Kong, J. L., Wang, X. Y., Bai, Y. T., Su, T. L., & Lin, S. (2021). Deep-learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization. Energies, 14(6), 1596.
[42]Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669-679.
[43]Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.
[44]Kimes, S. E., & Wirtz, J. (2003). Has revenue management become acceptable? Findings from an International study on the perceived fairness of rate fences. Journal of Service Research, 6(2), 125–135.
[45]Kaya, K., Yilmaz, Y., Yaslan, Y., Oguducu, S. G., & Cingi, F. (2022). Demand forecasting model using hotel clustering findings for hospitality industry. Information Processing & Management, 59(1), 102816.
[46]Majumder, A. B., Gupta, S., Singh, D., & Majumder, S. (2021, February). An intelligent system for prediction of COVID-19 case using machine learning framework-logistic regression. In Journal of Physics: Conference Series (Vol. 1797, No. 1, p. 012011). IOP Publishing.
[47]Moyeenudin, H. M., Parvez, S. J., Anandan, R., & Narayanan, K. (2018). Data management with PMS in hotel industry. International Journal of Engineering & Technology, 7(2.21), 327-330.
[48]Morales, D. R., & Wang, J. (2008). Passenger name record data mining based cancellation forecasting for revenue management. Innovative Applications of OR, 202(2), 554-562.
[49]Mehrotra, R., & Ruttley, J. (2006). Revenue management (second ed.). Washington, DC, USA: American Hotel & Lodging Association (AHLA).
[50]Morales, D. R., & Wang, J. (2010). Forecasting cancellation rates for services booking revenue management using data mining. European Journal of Operational Research, 202(2), 554-562.
[51]Noone, B. M., & Lee, C. H. (2011). Hotel overbooking: The effect of overcompensation on customers’ reactions to denied service. Journal of Hospitality & Tourism Research, 35(3), 334-357.
[52]Olivieri, M., Colleoni, E., & Bonaccorso, G. (2023). How Have Travelers′ Needs Evolved Because of the COVID-19 Pandemic? Corporate Reputation Building in Tourism Industry on Digital Platforms.
[53]Pereira, L. N. (2016). An introduction to helpful forecasting methods for hotel revenue management. International Journal of Hospitality Management, 58, 13-23.
[54]Pan, B., & Yang, Y. (2017). Forecasting destination weekly hotel occupancy with big data. Journal of Travel Research, 56(7), 957-970.
[55]Rajesh, T., & Bimal, A. 2016.Role of Tourism in Economic Growth of India. Pp.225 in Guliani, Lipika Kaur (eds.), Corporate Social Responsibility in the Hospitality and Tourism Industry.
(https://books.google.com.tw/books?id=svS1CwAAQBAJ&lpg=PA225&dq=hospitality%20industry%20%20and%20%20tourism%20are%20positively%20correlated&hl=zh-TW&pg=PA225#v=onepage&q=hospitality%20industry%20%20and%20%20tourism%20are%20positively%20correlated&f=false)
[56]Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. (2015). Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1), 148-175.
[57]Salama, A. Y. A., Hassanien, A. E., & Fahmy, A. (2019). Sheep identification using a hybrid deep learning and bayesian optimization approach. IEEE Access, 7, 31681-31687.
[58]Statista.Travel,Tourism& Hospitality.
(https://www.statista.com/statistics/1099933/travel-and-tourism-share-of-gdp/).
[59]Saito, T., Takahashi, A., Koide, N., & Ichifuji, Y. (2019). Application of online booking data to hotel revenue management. International Journal of Information Management, 46, 37-53.
[60]Sánchez, E. C., Sánchez-Medina, A. J., & Pellejero, M. (2020). Identifying critical hotel cancellations using artificial intelligence. Tourism Management Perspectives, 35, 100718.
[61]Sánchez-Medina, A. J., & Eleazar, C. (2020). Using machine learning and big data for efficient forecasting of hotel booking cancellations. International Journal of Hospitality Management, 89, 102546.
[62]Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting, 36(1), 75-85.
[63]Terblanche, W., & Wilson, T. (2015). An evaluation of nearly-extinct cohort methods for estimating the very elderly populations of Australia and New Zealand. PLoS One, 10(4), e0123692.
[64]Tang, R., Zeng, F., Chen, Z., Wang, J. S., Huang, C. M., & Wu, Z. (2020). The comparison of predicting storm-time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq. Atmosphere, 11(4), 316.
[65]Wu, D. C., Song, H., & Shen, S. (2017). New developments in tourism and hotel demand modeling and forecasting. International Journal of Contemporary Hospitality Management.
[66]World Tourism Organization (Ed.), 2018. World Tourism Organization. (https://doi.org/ 10.18111/9789284419876).
[67]Wutsqa, D. U. (2008). The Var-NN Model for Multivariate Time Series Forecasting. MatStat, 8(1), 35-43.
[68]Xiang, Z., Yan, J., & Demir, I. (2020). A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning. Water resources research, 56(1), e2019WR025326.
[69]Xiang, Z., Yan, J., & Demir, I. (2020). A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning. Water resources research, 56(1), e2019WR025326.
[70]Yu, G., & Schwartz, Z. (2006). Forecasting short time-series tourism demand with artificial intelligence models. Journal of travel Research, 45(2), 194-203.
[71]Yang, Y., Pan, B., & Song, H. (2014). Predicting hotel demand using destination marketing organization’s web traffic data. Journal of Travel Research, 53(4), 433-447.
[72]Zhang, A., Zhao, X., & Wang, L. (2021, October). CNN and LSTM based encoder-decoder for anomaly detection in multivariate time series. In 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (Vol. 5, pp. 571-575). IEEE.
[73]Zhang, Q., Qiu, L., Wu, H., Wang, J., & Luo, H. (2019, November). Deep
learning based dynamic pricing model for hotel revenue management. In 2019 International Conference on Data Mining Workshops (ICDMW) (pp. 370-375). IEEE. |