博碩士論文 110423021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.219.158.84
姓名 廖心妤(Hsin-Yu Liao)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 運用深度學習與機器學習於旅店取消訂單量預測模型
相關論文
★ 不動產仲介業銷售住宅類別之成交預測模型—以不動產仲介S公司為例★ 應用文字探勘技術建構預測客訴問題類別機器學習模型
★ 以機器學習技術建構顧客回購率預測模型:以某手工皂原料電子商務網站為例★ 以機器學習建構股價預測模型:以台灣股市為例
★ 以機器學習方法建構財務危機之預測模型:以台灣上市櫃公司為例★ 運用資料探勘技術於股票填息之預測模型:以台灣股市上市公司為例
★ 運用資料探勘技術優化 次世代防火牆規則之研究★ 應用資料探勘技術於電子病歷文本中識別相關新資訊
★ 應用深度學習於藥品後市場監督:Twitter文本分類任務★ 運用電子病歷與資料探勘技術建構腦中風病人心房顫動預測模型
★ 考量特徵選取與隨機森林之遺漏值填補技術★ 電子病歷縮寫消歧與一對多分類任務
★ 運用Meta-path與注意力機制改善個人化穿搭推薦★ 運用機器學習技術建構核保風險預測模型:以A公司為例
★ 風扇壽命預測使用大數據分析-以 X 公司為例★ 使用文字探勘與深度學習技術建置中風後肺炎之預測模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 旅遊業是全球經濟中重要且快速發展的行業。近年來,旅遊業面臨著許多挑戰,直接影響到旅店業。特別是互聯網時代,線上訂房平台改變消費者行為,增加了取消訂單的頻率。為應對這些問題,旅店業需要準確的需求預測工具。本研究旨在建立旅店每日取消訂單量預測模型,並探索三種不同的方法在此領域的應用,包括分類模型、時間序列模型和模型混合。本研究使用個案公司提供的四間旅店真實資料集作為研究。在分類預測會使用機器學習算法,如Random Forest、XGBoost以及LGBM,將其應用在客戶訂單上;在時間序列預測則是使用簡單移動平均(SMA)、週期性移動平均(Periodic SMA)及LSTM Seq2Seq;模型混合方面是使用加權平均將分類和時間序列的預測結果做混合。結果顯示在四間旅店的分類模型實驗中,除客戶訂單特徵外,加入日期、時間相關特徵及特徵工程所創的新特徵能提高預測準確度。其次,時間序列模型實驗中使用單變量預測,深度學習模型(LSTM Seq2Seq)並不比傳統時間序列預測模型(Periodic SMA)準確。使用Periodic SMA於四間旅店的WMAPE平均下降約46%。此外,使用LSTM Seq2Seq,其多變量預測結果優於單變量,四間旅店的WMAPE平均下降約36%。其次,模型混合的結果比分類轉時序或時間序列模型更佳,四間旅店的WMAPE平均下降約3.3%。最後,四間旅店的數據聯合訓練並考慮旅店特徵,可進一步提高預測準確性,四間旅店的AUC平均提升約1.6%。由本研究的分析可知模型混合有助於為旅店業提供全面且有效的旅店取消訂單量預測解決方案。
摘要(英) Tourism is an important and fast-growing industry in the global economy. In recent years, the tourism industry has faced many challenges that directly affect the hotel industry. Especially in the Internet age, online room booking platforms have changed consumer behavior and increased the frequency of cancellations. To deal with these problems, the hotel industry needs accurate demand forecasting tools. The purpose of this study is to establish a forecasting model for daily cancellation orders in hotels, and to explore the application of three different methods in this field, including classification models, time series models, and model hybriding.This study uses the real data sets of four hotels provided by the case company as research. Machine learning algorithms, such as Random Forest, XGBoost, and LGBM, are used in classification forecasting and applied to customer orders; in time series forecasting, simple moving average (SMA), periodic moving average (Periodic SMA) and LSTM Seq2Seq are used ; In terms of model hybriding, the weighted average is used to hybrid the prediction results of classification and time series.The results show that: In the classification model experiments of the four hotels, in addition to customer order features, adding date and time-related features and new features created by feature engineering can improve the prediction accuracy; In the time series model experiments, single For variable prediction, the deep learning model (LSTM Seq2Seq) is not more accurate than the traditional time series (Periodic SMA). The WMAPE of the four hotels using Periodic SMA dropped by about 46% on average. In addition, using LSTM Seq2Seq, its multivariate prediction results are better than univariate, and the average WMAPE of the four hotels drops by about 36%. A decrease of about 3.3%;The joint training of the data of the four hotels and considering the characteristics of the hotels can further improve the prediction accuracy, and the AUC of the four hotels has increased by about 1.6% on average. The analysis of this study shows that model hybriding helps to provide a comprehensive and effective hotel cancellation order forecasting solution for the hotel industry.
關鍵字(中) ★ 旅店取消訂單
★ 機器學習
★ 深度學習
★ 模型混合
關鍵字(英) ★ hotel cancellation prediction
★ machine learning
★ deep learning
★ model hybriding
論文目次 摘要 i
ABSTRACT ii
致謝辭 iii
目錄 iv
圖目錄 vii
表目錄 viii
第一章、緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的與問題 4
第二章、文獻回顧與探討 5
2.1 旅店需求預測 5
2.2 其他領域的需求預測 12
第三章、 研究方法 15
3.1 資料來源與前處理 15
3.2 分類模型建構 16
3.2.1變數定義 16
3.2.2分類演算法 18
3.3 時間序列模型 19
3.3.1變數定義 19
3.3.2時間序列演算法 20
3.4 模型混合 22
第四章、實驗評估 24
4.1 資料處理與後續分析流程 24
4.1.1 訓練集與測試集的切分 25
4.1.2 訓練集與驗證集的切分 25
4.1.3 貝葉斯優化 27
4.2 實驗設計與問題 29
4.2.1 實驗 1 29
4.2.2 實驗 2 30
4.2.3 實驗 3 30
4.3 評估指標 31
4.3.1分類 31
4.3.2 迴歸 32
4.4 實驗結果 34
4.4.1 實驗 1 34
4.4.2 實驗 2 40
4.4.2.1 分類轉時間序列 40
4.4.2.2 時間序列 46
4.4.2.3 模型混合 48
4.4.3 實驗 3 51
4.5 討論 52
4.5.1 實驗 1 52
4.5.2 實驗 2 53
4.5.2.1 分類轉時間序列 53
4.5.2.2 時間序列 55
4.5.2.3 模型混合 56
4.5.3 實驗 3 56
4.5.4 分類模型中的特徵統計檢定 57
第五章、研究結論與建議 67
5.1 研究結論 67
5.2 研究限制與未來研究方向 68
參考文獻 70
附錄一 76
參考文獻 [1]Antonio, N., De Almeida, A., & Nunes, L. (2017). Predicting hotel booking cancellations to decrease uncertainty and increase revenue. Tourism & Management Studies, 13(2), 25-39.

[2]Adil, M., Ansari, M. F., Alahmadi, A., Wu, J. Z., & Chakrabortty, R. K. (2021). Solving the problem of class imbalance in the prediction of hotel cancelations: A hybridized machine learning approach. Processes, 9(10), 1713.

[3]Antonio, N., de Almeida, A., & Nunes, L. (2019). Big data in hotel revenue management: Exploring cancellation drivers to gain insights into booking cancellation behavior. Cornell Hospitality Quarterly, 60(4), 298-319.

[4]Antonio, N., De Almeida, A., & Nunes, L. (2017). Predicting hotel booking cancellations to decrease uncertainty and increase revenue. Tourism & Management Studies, 13(2), 25-39.

[5]Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937-1967.

[6]Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of machine learning research, 13(2).

[7]Bouktif, S., Fiaz, A., Ouni, A., & Serhani, M. A. (2019). Single and multi-sequence deep learning models for short and medium term electric load forecasting. Energies, 12(1), 149.

[8]Bi, J. W., Liu, Y., & Li, H. (2020). Daily tourism volume forecasting for tourist attractions. Annals of Tourism Research, 83, 102923.

[9]Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.

[10]Breiman, L. (1996). Bagging predictors. Machine learning, 24, 123-140.

[11]Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.

[12]Chen, S., Ngai, E. W., Ku, Y., Xu, Z., Gou, X., & Zhang, C. (2023). Prediction of hotel booking cancellations: Integration of machine learning and probability model based on interpretable feature interaction. Decision Support Systems, 113959.

[13]Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation.arXiv preprint arXiv:1406.1078.

[14]Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).

[15]Chiang, W.-C., Chen, J. C., & Xu, X. (2007). An overview of research on revenue management: current issues and future research. International Journal of Revenue Management, 1(1), 97–128.

[16]Chen, C., & Schwartz, Z. (2008). Room rate patterns and customers′ propensity to book a hotel room. Journal of Hospitality & Tourism Research, 32(3), 287-306.

[17]Claveria, O., Monte, E., & Torra, S. (2015). Tourism demand forecasting with neural network models: different ways of treating information. International Journal of Tourism Research, 17(5), 492-500.

[18]Chow, W. S., Shyu, J. C., & Wang, K. C. (1998). Developing a forecast system for hotel occupancy rate using integrated ARIMA models. Journal of international hospitality, leisure & tourism management, 1(3), 55-80.

[19]Divino, J. A., & McAleer, M. (2010). Modelling and forecasting daily international mass tourism to Peru. Tourism Management, 31(6), 846-854.

[20]Fotiadis, A., Polyzos, S., & Huan, T. C. T. (2021). The good, the bad and the ugly on COVID-19 tourism recovery. Annals of tourism research, 87, 103117.

[21]Falk, M., & Vieru, M. (2018). Modelling the cancellation behaviour of hotel guests. International Journal of Contemporary Hospitality Management.

[22]Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.

[23]Fan, J., Ma, X., Wu, L., Zhang, F., Yu, X., & Zeng, W. (2019). Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data. Agricultural water management, 225, 105758.

[24]Gelbart, M. A., Snoek, J., & Adams, R. P. (2014). Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607.

[25]Garnett, R. (2023). Bayesian Optimization. 英國: Cambridge University Press.

[26]Goel, H., Melnyk, I., Oza, N., Matthews, B., & Banerjee, A. (2016). Multivariate aviation time series modeling: VARs vs. LSTMs.
Unpublished manuscript Retrieved from https://www%20semanticscholar% 20org/paper/Multivariate-Aviation-Time-Series-Modeling.

[27]Guadix, J., Cortés, P., Onieva, L., & Muñuzuri, J. (2010). Technology revenue management system for customer groups in hotels. Journal of Business Research, 63(5), 519-527.

[28] Guo, X., Dong, Y., & Ling, L. (2016). Customer perspective on overbooking: The failure of customers to enjoy their reserved services, accidental or intended?. Journal of Air Transport Management, 53, 65-72.

[29] Giglio, S., Bertacchini, F., Bilotta, E., & Pantano, P. (2019). Using social media to identify tourism attractiveness in six Italian cities. Tourism management, 72, 306-312.

[30]Huang, L., & Zheng, W. (2021). Novel deep learning approach for forecasting daily hotel demand with agglomeration effect. International Journal of Hospitality Management, 98, 103038.

[31]Hansun, S. (2013, November). A new approach of moving average method in time series analysis. In 2013 conference on new media studies (CoNMedia) (pp. 1-4). IEEE.

[32]Hayes, D. K., & Miller, A. A. (2011). Revenue Management for the Hospitality Industry.​ Forlag John Wiley & Sons. Inc., Hoboken, New Jersey.

[33]Hueglin, C., & Vannotti, F. (2001, August). Data mining techniques to improve forecast accuracy in airline business. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 438-442).

[34]Hu, Y. C., Jiang, P., & Lee, P. C. (2019). Forecasting tourism demand by incorporating neural networks into Grey–Markov models. Journal of the Operational Research Society, 70(1), 12-20.

[35]Hayes, D. K., Hayes, J. D., & Hayes, P. A. (2021). Revenue management for the hospitality industry. John Wiley & Sons.

[36]Hueglin, C., & Vannotti, F. (2001, August). Data mining techniques to improve forecast accuracy in airline business. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 438-442).

[37]Huang, L., & Zheng, W. (2021). Novel deep learning approach for
forecasting daily hotel demand with agglomeration effect. International Journal of Hospitality Management, 98, 103038.

[38]Islek, I., & Oguducu, S. G. (2015, June). A retail demand forecasting model based on data mining techniques. In 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE) (pp. 55-60). IEEE.

[39]Ivanov, S. (2014). Hotel revenue management: From theory to practice. Zangador.

[40]Jannes klaas. (2019). Machine Learning for Finance: Principles and Practice for Financial Insiders (pp. 456). Packt Publishing Ltd.

[41]Jin, X. B., Zheng, W. Z., Kong, J. L., Wang, X. Y., Bai, Y. T., Su, T. L., & Lin, S. (2021). Deep-learning forecasting method for electric power load via attention-based encoder-decoder with bayesian optimization. Energies, 14(6), 1596.

[42]Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669-679.

[43]Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information processing systems, 30.

[44]Kimes, S. E., & Wirtz, J. (2003). Has revenue management become acceptable? Findings from an International study on the perceived fairness of rate fences. Journal of Service Research, 6(2), 125–135.

[45]Kaya, K., Yilmaz, Y., Yaslan, Y., Oguducu, S. G., & Cingi, F. (2022). Demand forecasting model using hotel clustering findings for hospitality industry. Information Processing & Management, 59(1), 102816.

[46]Majumder, A. B., Gupta, S., Singh, D., & Majumder, S. (2021, February). An intelligent system for prediction of COVID-19 case using machine learning framework-logistic regression. In Journal of Physics: Conference Series (Vol. 1797, No. 1, p. 012011). IOP Publishing.

[47]Moyeenudin, H. M., Parvez, S. J., Anandan, R., & Narayanan, K. (2018). Data management with PMS in hotel industry. International Journal of Engineering & Technology, 7(2.21), 327-330.

[48]Morales, D. R., & Wang, J. (2008). Passenger name record data mining based cancellation forecasting for revenue management. Innovative Applications of OR, 202(2), 554-562.

[49]Mehrotra, R., & Ruttley, J. (2006). Revenue management (second ed.). Washington, DC, USA: American Hotel & Lodging Association (AHLA).

[50]Morales, D. R., & Wang, J. (2010). Forecasting cancellation rates for services booking revenue management using data mining. European Journal of Operational Research, 202(2), 554-562.

[51]Noone, B. M., & Lee, C. H. (2011). Hotel overbooking: The effect of overcompensation on customers’ reactions to denied service. Journal of Hospitality & Tourism Research, 35(3), 334-357.

[52]Olivieri, M., Colleoni, E., & Bonaccorso, G. (2023). How Have Travelers′ Needs Evolved Because of the COVID-19 Pandemic? Corporate Reputation Building in Tourism Industry on Digital Platforms.

[53]Pereira, L. N. (2016). An introduction to helpful forecasting methods for hotel revenue management. International Journal of Hospitality Management, 58, 13-23.

[54]Pan, B., & Yang, Y. (2017). Forecasting destination weekly hotel occupancy with big data. Journal of Travel Research, 56(7), 957-970.

[55]Rajesh, T., & Bimal, A. 2016.Role of Tourism in Economic Growth of India. Pp.225 in Guliani, Lipika Kaur (eds.), Corporate Social Responsibility in the Hospitality and Tourism Industry.
(https://books.google.com.tw/books?id=svS1CwAAQBAJ&lpg=PA225&dq=hospitality%20industry%20%20and%20%20tourism%20are%20positively%20correlated&hl=zh-TW&pg=PA225#v=onepage&q=hospitality%20industry%20%20and%20%20tourism%20are%20positively%20correlated&f=false)

[56]Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De Freitas, N. (2015). Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1), 148-175.

[57]Salama, A. Y. A., Hassanien, A. E., & Fahmy, A. (2019). Sheep identification using a hybrid deep learning and bayesian optimization approach. IEEE Access, 7, 31681-31687.

[58]Statista.Travel,Tourism& Hospitality.
(https://www.statista.com/statistics/1099933/travel-and-tourism-share-of-gdp/).

[59]Saito, T., Takahashi, A., Koide, N., & Ichifuji, Y. (2019). Application of online booking data to hotel revenue management. International Journal of Information Management, 46, 37-53.

[60]Sánchez, E. C., Sánchez-Medina, A. J., & Pellejero, M. (2020). Identifying critical hotel cancellations using artificial intelligence. Tourism Management Perspectives, 35, 100718.

[61]Sánchez-Medina, A. J., & Eleazar, C. (2020). Using machine learning and big data for efficient forecasting of hotel booking cancellations. International Journal of Hospitality Management, 89, 102546.

[62]Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting, 36(1), 75-85.

[63]Terblanche, W., & Wilson, T. (2015). An evaluation of nearly-extinct cohort methods for estimating the very elderly populations of Australia and New Zealand. PLoS One, 10(4), e0123692.

[64]Tang, R., Zeng, F., Chen, Z., Wang, J. S., Huang, C. M., & Wu, Z. (2020). The comparison of predicting storm-time ionospheric TEC by three methods: ARIMA, LSTM, and Seq2Seq. Atmosphere, 11(4), 316.

[65]Wu, D. C., Song, H., & Shen, S. (2017). New developments in tourism and hotel demand modeling and forecasting. International Journal of Contemporary Hospitality Management.

[66]World Tourism Organization (Ed.), 2018. World Tourism Organization. (https://doi.org/ 10.18111/9789284419876).

[67]Wutsqa, D. U. (2008). The Var-NN Model for Multivariate Time Series Forecasting. MatStat, 8(1), 35-43.

[68]Xiang, Z., Yan, J., & Demir, I. (2020). A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning. Water resources research, 56(1), e2019WR025326.

[69]Xiang, Z., Yan, J., & Demir, I. (2020). A rainfall‐runoff model with LSTM‐based sequence‐to‐sequence learning. Water resources research, 56(1), e2019WR025326.

[70]Yu, G., & Schwartz, Z. (2006). Forecasting short time-series tourism demand with artificial intelligence models. Journal of travel Research, 45(2), 194-203.

[71]Yang, Y., Pan, B., & Song, H. (2014). Predicting hotel demand using destination marketing organization’s web traffic data. Journal of Travel Research, 53(4), 433-447.

[72]Zhang, A., Zhao, X., & Wang, L. (2021, October). CNN and LSTM based encoder-decoder for anomaly detection in multivariate time series. In 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (Vol. 5, pp. 571-575). IEEE.

[73]Zhang, Q., Qiu, L., Wu, H., Wang, J., & Luo, H. (2019, November). Deep
learning based dynamic pricing model for hotel revenue management. In 2019 International Conference on Data Mining Workshops (ICDMW) (pp. 370-375). IEEE.
指導教授 胡雅涵(Ya-Han Hu) 審核日期 2023-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明