參考文獻 |
2022 ACFE Report to the Nations. (n.d.). Retrieved April 7, 2023, from https://legacy.acfe.com/report-to-the-nations/2022/
Adamuthe, A. (2020). Improved Text Classification using Long Short-Term Memory and Word Embedding Technique. International Journal of Hybrid Information Technology, 13, 19–32. https://doi.org/10.21742/IJHIT.2020.13.1.03
Ashtiani, M. N., and Raahemi, B. (2022). Intelligent Fraud Detection in Financial Statements Using Machine Learning and Data Mining: A Systematic Literature Review. IEEE Access, 10, 72504–72525. https://doi.org/10.1109/ACCESS.2021.3096799
Ballı, S., & Karasoy, O. (2019). Development of content-based SMS classification application by using Word2Vec-based feature extraction. IET Software, 13(4), 295–304. https://doi.org/10.1049/iet-sen.2018.5046
Bao, Y., Ke, B., Li, B., Yu, Y. J., & Zhang, J. (2020). Detecting Accounting Fraud in Publicly Traded U.S. Firms Using a Machine Learning Approach. Journal of Accounting Research, 58(1), 199–235. https://doi.org/10.1111/1475-679X.12292
Chen, Y.-J., & Chen, Y.-M. (2022). Forecasting corporate credit ratings using big data from social media. Expert Systems with Applications, 207, 118042. https://doi.org/10.1016/j.eswa.2022.118042
Craja, P., Kim, A., & Lessmann, S. (2020). Deep learning for detecting financial statement fraud. Decision Support Systems, 139, 113421. https://doi.org/10.1016/j.dss.2020.113421
Cui, Y., Che, W., Liu, T., Qin, B., & Yang, Z. (2021). Pre-Training with Whole Word Masking for Chinese BERT. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29, 3504–3514. https://doi.org/10.1109/TASLP.2021.3124365
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv. https://doi.org/10.48550/arXiv.1810.04805
Dong, W., Liao, S. S., Xu, Y., & Feng, X. (2016, August). Leading Effect of Social Media for Financial Fraud Disclosure: A Text Mining Based Analytics. AMCIS 2016 Proceedings. 22nd Americas Conference on Information Systems: Surfing the IT Innovation Wave, AMCIS 2016. https://scholars.cityu.edu.hk/en/publications/leading-effect-of-social-media-for-financial-fraud-disclosure(40d18561-cf5e-4b4e-8c64-e4454284f7d6).html
Dong, W., Liao, S., & Zhang, Z. (2018). Leveraging Financial Social Media Data for Corporate Fraud Detection. Journal of Management Information Systems, 35(2), 461–487. https://doi.org/10.1080/07421222.2018.1451954
Hameed, Z., & Garcia-Zapirain, B. (2020). Sentiment Classification Using a Single-Layered BiLSTM Model. IEEE Access, 8, 73992–74001. https://doi.org/10.1109/ACCESS.2020.2988550
Hosmer, D. W., & Lemeshow, S. (2000). Assessing the Fit of the Model. In Applied Logistic Regression (pp. 143–202). John Wiley & Sons, Ltd. https://doi.org/10.1002/0471722146.ch5
Kim, H., & Jeong, Y.-S. (2019). Sentiment Classification Using Convolutional Neural Networks. Applied Sciences, 9(11), Article 11. https://doi.org/10.3390/app9112347
Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D. (2019). Text Classification Algorithms: A Survey. Information, 10(4), Article 4. https://doi.org/10.3390/info10040150
Lam, H., & Harcourt, M. (2019). Whistle‐blowing in the digital era: Motives, issues and recommendations. New Technology, Work & Employment, 34(2), 174–190. https://doi.org/10.1111/ntwe.12139
Li, J., Lin, Y., Zhao, P., Liu, W., Cai, L., Sun, J., Zhao, L., Yang, Z., Song, H., Lv, H., & Wang, Z. (2022). Automatic text classification of actionable radiology reports of tinnitus patients using bidirectional encoder representations from transformer (BERT) and in-domain pre-training (IDPT). BMC Medical Informatics and Decision Making, 22(1), 200. https://doi.org/10.1186/s12911-022-01946-y
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019, July 26). RoBERTa: A Robustly Optimized BERT Pretraining Approach. ArXiv.Org. https://arxiv.org/abs/1907.11692v1
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space (arXiv:1301.3781). arXiv. https://doi.org/10.48550/arXiv.1301.3781
Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). Deep Learning--based Text Classification: A Comprehensive Review. ACM Computing Surveys, 54(3), 62:1-62:40. https://doi.org/10.1145/3439726
Selva Birunda, S., & Kanniga Devi, R. (2021). A Review on Word Embedding Techniques for Text Classification. In J. S. Raj, A. M. Iliyasu, R. Bestak, & Z. A. Baig (Eds.), Innovative Data Communication Technologies and Application (pp. 267–281). Springer. https://doi.org/10.1007/978-981-15-9651-3_23
Sharif, O., Hossain, E., & Hoque, M. M. (2021). Combating Hostility: Covid-19 Fake News and Hostile Post Detection in Social Media (arXiv:2101.03291). arXiv. https://doi.org/10.48550/arXiv.2101.03291
Soong, G. H., & Tan, C. C. (2021). Sentiment Analysis on 10-K Financial Reports using Machine Learning Approaches. 2021 IEEE 11th International Conference on System Engineering and Technology (ICSET), 124–129. https://doi.org/10.1109/ICSET53708.2021.9612552
Stein, R. A., Jaques, P. A., & Valiati, J. F. (2019). An Analysis of Hierarchical Text Classification Using Word Embeddings. Information Sciences, 471, 216–232. https://doi.org/10.1016/j.ins.2018.09.001
Su, Y., & Kuo, C.-C. J. (2019). On extended long short-term memory and dependent bidirectional recurrent neural network. Neurocomputing, 356, 151–161. https://doi.org/10.1016/j.neucom.2019.04.044
Wang, Y., Pan, Z., Zheng, J., Qian, L., & Mingtao, L. (2019). A hybrid ensemble method for pulsar candidate classification. Astrophysics and Space Science, 364. https://doi.org/10.1007/s10509-019-3602-4
Xiong, F., Chapple, L., & Yin, H. (2018). The use of social media to detect corporate fraud: A case study approach. Business Horizons, 61(4), 623–633. https://doi.org/10.1016/j.bushor.2018.04.002
Xu, G., Meng, Y., Qiu, X., Yu, Z., & Wu, X. (2019). Sentiment Analysis of Comment Texts Based on BiLSTM. IEEE Access, 7, 51522–51532. https://doi.org/10.1109/ACCESS.2019.2909919
郭螢璇. (2023). 以重大訊息文本數據為基礎之上市公司風險預警模型之研究 [銘傳大學]. In 應用統計與資料科學學系碩士班: Vol. 碩士. https://hdl.handle.net/11296/kmv88g
陳柏予. (2022). 應用文字探勘與深度學習技術建立舞弊檢測模型 [國立中正大學]. In 會計與資訊科技研究所: Vol. 碩士. https://hdl.handle.net/11296/nzfgy4
馮少辰. (2022). 以機器學習方式辨認財務危機公司 -納入重大訊息之考量 [東吳大學]. In 會計學系: Vol. 碩士. https://hdl.handle.net/11296/xx4syt
麥嘉蕙. (2021). 探討新聞文本情緒分析與企業舞弊偵測之關聯性研究 [國立政治大學]. In 會計學系: Vol. 碩士. https://hdl.handle.net/11296/jmm8ap |