參考文獻 |
Allem, J. P., Dharmapuri, L., Unger, J. B., & Cruz, T. B. (2018). Characterizing JUUL-related posts on twitter. Drug and alcohol dependence, 190, 1-5.
Aphinyanaphongs, Y., Lulejian, A., Brown, D. P., Bonneau, R., & Krebs, P. (2016). Text classification for automatic detection of e-cigarette use and use for smoking cessation from twitter: a feasibility pilot. In Biocomputing 2016: Proceedings of the Pacific Symposium (pp. 480-491).
Benson, R., Hu, M., Chen, A. T., Nag, S., Zhu, S. H., & Conway, M. (2020). Investigating the attitudes of adolescents and young adults towards JUUL: computational study using twitter data. JMIR public health and surveillance, 6(3), e19975.
Bradshaw, A. S. (2022). # DoctorsSpeakUp: exploration of hashtag hijacking by anti-vaccine advocates and the influence of scientific counterpublics on twitter. Health Communication, 1-11.
Demšar, J., Zupan, B., Leban, G., & Curk, T. (2004). Orange: From experimental machine learning to interactive data mining. In Knowledge Discovery in Databases: PKDD 2004: 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, Pisa, Italy, September 20-24, 2004. Proceedings 8 (pp. 537-539). Springer Berlin Heidelberg.
Dunn, K., Taylor, A., & Turfus, S. (2021). A review of cannabidiol‐containing electronic liquids—Current regulations and labelling accuracy. Drug Testing and Analysis, 13(8), 1490-1498.
Elbagir, S., & Yang, J. (2019, March). twitter sentiment analysis using natural language toolkit and VADER sentiment. In Proceedings of the international multiconference of engineers and computer scientists (Vol. 122, p. 16).
Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21, 137-146.
Gross, J., Tomczak, T., & Gollnhofer, J. F. (2022). Brand-related content in social media: Consumers as social media influencers. https://www.alexandria.unisg.ch/handle/20.500.14171/109325
Hadgu, A. T., Garimella, K., & Weber, I. (2013). Political hashtag hijacking in the U.S. 55–56. https://doi.org/10.1145/2487788.2487809
Jain, N., Agarwal, P., & Pruthi, J. (2015). HashJacker- Detection and Analysis of Hashtag Hijacking on twitter. International Journal of Computer Applications, 114(19), 17–20. https://doi.org/10.5120/20085-2111
Jockers, M., & Thalken, R. (2020). Part of Speech Tagging and Named Entity Recognition (頁 237–245). https://doi.org/10.1007/978-3-030-39643-5_18
Ketonen, V., & Malik, A. (2020). Characterizing vaping posts on Instagram by using unsupervised machine learning. International Journal of Medical Informatics, 141, 104223. https://doi.org/10.1016/j.ijmedinf.2020.104223
Khachatoorian, C., Jacob, P., Benowitz, N. L., & Talbot, P. (2019). Electronic Cigarette Chemicals Transfer from a Vape Shop to a Nearby Business in a Multiple-Tenant Retail Building. Tobacco control, 28(5), 519–525. https://doi.org/10.1136/tobaccocontrol-2018-054316
Liu, X., Shin, H., & Burns, A. C. (2021). Examining the impact of luxury brand’s social media marketing on customer engagement: Using big data analytics and natural language processing. Journal of Business Research, 125(C), 815–826.
Luoma-aho, V., Virolainen, M., Lievonen, M., & Halff, G. (2018). Brand Hijacked: Why Campaigns and Hashtags are Taken over by Audiences. https://jyx.jyu.fi/handle/123456789/59119
Madatov, K., Bekchanov, S., & Vičič, J. (2023). Uzbek text summarization based on TF-IDF (arXiv:2303.00461). arXiv. https://doi.org/10.48550/arXiv.2303.00461
McCausland, K., Maycock, B., Leaver, T., & Jancey, J. (2019). The messages presented in electronic cigarette–related social media promotions and discussion: scoping review. Journal of Medical Internet Research, 21(2), e11953.
McNeill, A., Brose, L., Robson, D., Calder, R., & Simonavicius, E. (2021). Vaping in England: an evidence update including vaping for smoking cessation.
Miech, R., Johnston, L., O’Malley, P. M., Bachman, J. G., & Patrick, M. E. (2019). Trends in Adolescent Vaping, 2017-2019. The New England Journal of Medicine, 381(15), 1490–1491. https://doi.org/10.1056/NEJMc1910739
Mishra, S., Shukla, P., & Agarwal, R. (2022). Analyzing machine learning enabled fake news
detection techniques for diversified datasets. Wireless Communications and Mobile
Computing, 2022, 1-18. https://www.hindawi.com/journals/wcmc/2022/1575365/
Mousavi, P., & Ouyang, J. (2021). Detecting Hashtag Hijacking for Hashtag Activism. Proceedings of the 1st Workshop on NLP for Positive Impact, 82–92. https://doi.org/10.18653/v1/2021.nlp4posimpact-1.9
Müller, M., Salathé, M., & Kummervold, P. E. (2020). COVID-twitter-BERT: A Natural Language Processing Model to Analyse COVID-19 Content on twitter (arXiv:2005.07503). arXiv. https://doi.org/10.48550/arXiv.2005.07503
Muramatsu, J., & Pratt, W. (2001, September). Transparent Queries: investigation users′
mental models of search engines. In Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in information retrieval (pp.
217-224). https://dl.acm.org/doi/abs/10.1145/383952.383991
Navigli, R., Barba, E., Conia, S., & Blloshmi, R. (2022). A Tour of Explicit Multilingual Semantics: Word Sense Disambiguation, Semantic Role Labeling and Semantic Parsing. Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing: Tutorial Abstracts, 35–43. https://aclanthology.org/2022.aacl-tutorials.6
Pang, A., Limsico, J. I. L., Phong, L., Lareza, B. J. L., & Low, S. Y. (2018). 16. Reputational damage on twitter# hijack. From Media Hype to twitter Storm, 355.
Pike, J. R., Tan, N., Miller, S., Cappelli, C., Xie, B., & Stacy, A. W. (2019). The Effect of E-cigarette Commercials on Youth Smoking: A Prospective Study. American journal of health behavior, 43(6), 1103–1118. https://doi.org/10.5993/AJHB.43.6.8
Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., & Huang, X. (2020). Pre-trained Models for Natural Language Processing: A Survey. Science China Technological Sciences, 63(10), 1872–1897. https://doi.org/10.1007/s11431-020-1647-3
Raza, S., & Ding, C. (2022). Fake news detection based on news content and social contexts:
a transformer-based approach. International Journal of Data Science and Analytics,
13(4), 335-362. https://link.springer.com/article/10.1007/s41060-021-00302-z
Reuben, M., Elyashar, A., & Puzis, R. (2022). Iterative query selection for opaque search
engines with pseudo relevance feedback. Expert Systems with Applications, 201, 117027. https://www.sciencedirect.com/science/article/pii/S0957417422004432
Roberts, D. F. (2000). Media and youth: Access, exposure, and privatization. Journal of Adolescent Health, 27(2, Supplement 1), 8–14. https://doi.org/10.1016/S1054-139X(00)00128-2
Ruppel, T., Alexander, B., & Mayrovitz, H. N. (2021). Assessing vaping views, usage, and vaping-related education among medical students: A pilot study. Cureus, 13(2). Schmitt, X., Kubler, S., Robert, J., Papadakis, M., & LeTraon, Y. (2019). A Replicable Comparison Study of NER Software: StanfordNLP, NLTK, OpenNLP, SpaCy, Gate. 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS), 338–343. https://doi.org/10.1109/SNAMS.2019.8931850
Shahzad, K., Khan, S. A., Ahmad, S., & Iqbal, A. (2022). A Scoping Review of the
Relationship of Big Data Analytics with Context-Based Fake News Detection on
Digital Media in Data Age. Sustainability, 14(21), 14365.
https://www.mdpi.com/2071-1050/14/21/14365
Siano, A., Confetto, M. G., Vollero, A., & Covucci, C. (2021). Redefining brand hijacking from a non-collaborative brand co-creation perspective. Journal of Product & Brand Management, 31(1), 110–126. https://doi.org/10.1108/JPBM-03-2020-2780
Sundar, S. S., & Limperos, A. M. (2013). Uses and Grats 2.0: New Gratifications for New Media. Journal of Broadcasting & Electronic Media, 57(4), 504–525. https://doi.org/10.1080/08838151.2013.845827
Taylor, J., Wiens, T., Peterson, J., Saravia, S., Lunda, M., Hanson, K., Wogen, M., D’Heilly, P., Margetta, J., Bye, M., Cole, C., Mumm, E., Schwerzler, L., Makhtal, R., Danila, R., Lynfield, R., Holzbauer, S., Blount, B. C., Karwowski, M. P., … Valentin-Blasini, L. (2019). Characteristics of E-cigarette, or Vaping, Products Used by Patients with Associated Lung Injury and Products Seized by Law Enforcement—Minnesota, 2018 and 2019. Morbidity and Mortality Weekly Report, 68(47), 1096–1100. https://doi.org/10.15585/mmwr.mm6847e1
Vandam, C., & Tan, P.-N. (2016). Detecting hashtag hijacking from twitter. 370–371. https://doi.org/10.1145/2908131.2908179
Visweswaran, S., Colditz, J. B., O’Halloran, P., Han, N.-R., Taneja, S. B., Welling, J., Chu, K.-H., Sidani, J. E., & Primack, B. A. (2020). Machine Learning Classifiers for twitter Surveillance of Vaping: Comparative Machine Learning Study. Journal of Medical Internet Research, 22(8), e17478. https://doi.org/10.2196/17478
Wakefield, M., Flay, B., Nichter, M., & Giovino, G. (2003). Role of the media in influencing trajectories of youth smoking. Addiction (Abingdon, England), 98 Suppl 1, 79–103. https://doi.org/10.1046/j.1360-0443.98.s1.6.x
Walley, S. C., Wilson, K. M., Winickoff, J. P., & Groner, J. (2019). A Public Health Crisis: Electronic Cigarettes, Vape, and JUUL. Pediatrics, 143(6), e20182741. https://doi.org/10.1542/peds.2018-2741
Wallner, T. S., Magnier, L. B. M., & Mugge, R. (2022). Buying new or refurbished?: PLATE 2021. 4th Conference on Product Lifetimes and the Environment (PLATE), 1–6. https://doi.org/10.31880/10344/10172
Wilie, B., Vincentio, K., Winata, G. I., Cahyawijaya, S., Li, X., Lim, Z. Y., Soleman, S., Mahendra, R., Fung, P., Bahar, S., & Purwarianti, A. (2020). IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding (arXiv:2009.05387). arXiv. https://doi.org/10.48550/arXiv.2009.05387
Xanthopoulos, P., Panagopoulos, O. P., Bakamitsos, G. A., & Freudmann, E. (2016). Hashtag hijacking: What it is, why it happens and how to avoid it. Journal of Digital & Social Media Marketing, 3(4), 353–362.
Zhang, Z., & Zhang, D. (2021). What is Data Science? An Operational Definition based on Text Mining of Data Science Curricula. Journal of Behavioral Data Science, 1(1), Article 1. https://doi.org/10.35566/jbds/v1n1/p1 |