以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:44 、訪客IP:3.147.82.108
姓名 王怡如(Yi-Ju Wang) 查詢紙本館藏 畢業系所 資訊管理學系在職專班 論文名稱 類股輪動為基礎之神經網路趨勢預測-以台灣市場金融股為例
(Neural Network Trend Forecasting Based on Stock Rotation - A Case Study on Financial Stocks in the Taiwan Market)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2028-7-1以後開放) 摘要(中) 本文以台灣地區上市公司為研究對象,採用 2008 年 1 月至 2023 年 4 月期間的類股指數丶期貨指數資料及金融股個股股價,建立股價預測模型。本研究希望可以先從類股中發掘相關的輪動趨勢,以此預測下一批資金將投入的類股,在產業類股起漲前,可以提前佈局。主要使用 Transformer 模型探討股價預測問題,希望藉由模型的預測,預先得知股票漲跌趨勢,提供投資人做為交易的參考,能夠讓投資人降低投資風險,增加投資報價率。除了使用 Transformer 模型之外,並嘗試將類股輪動因素加入實驗中,驗證是否可以有效的增進股價預測正確性。 摘要(英) This article focuses on listed companies in Taiwan and establishes a stock price prediction model using sector index data, futures index data, and financial stock prices from January 2008 to April 2023. The study aims to explore the relevant sector rotation trends first to predict which sectors will receive the next batch of funds. It′s possible to make advance arrangements before the stocks rise. The main model used in this study is the Transformer model to explore stock price prediction problems. Through the model′s predictions, investors can obtain advance knowledge of the stock′s trend, reduce investment risks, and increase investment returns. In addition to using the Transformer model, the study also attempts to incorporate sector rotation factors to verify whether they can effectively improve the accuracy of stock price predictions. 關鍵字(中) ★ 類股輪動
★ 神經網路
★ 股價預測關鍵字(英) ★ Sector rotation
★ Neural network
★ Stock price prediction論文目次 內容
中文摘要......................................................................................................................................................... II
英文摘要........................................................................................................................................................ III
致謝................................................................................................................................................................ IV
目錄................................................................................................................................................................. V
圖目錄...........................................................................................................................................................VII
表目錄............................................................................................................................................................. X
一、 緒論................................................................................................................................................... 1
1-1 研究背景..................................................................................................................................................... 1
1-2 研究動機..................................................................................................................................................... 4
1-3 研究目的..................................................................................................................................................... 5
1-4 論文流程與架構......................................................................................................................................... 6
二、 文獻探討 ........................................................................................................................................... 7
2-1 股票投資..................................................................................................................................................... 7
2-2 時間序列分析........................................................................................................................................... 14
2-3 神經網路................................................................................................................................................... 18
2-3-1 RNN (Recurrent Neural Network).............................................................................................. 18
2-3-2 LSTM(Long Short-Term Memory).............................................................................................. 19
2-3-3 GRU(Gated Recurrent Unit).................................................................................................... 21
2-3-4 CNN (Convolutional Neural Network)...................................................................................... 22
2-3-5 Transformer.................................................................................................................................... 22
三、 研究方法 ..........................................................................................................................................27
3-1 系統架構................................................................................................................................................... 27
3-2 資料前處理............................................................................................................................................... 28
3-3 DTW 模型.................................................................................................................................................... 29
3-4 TRANSFORMER 模型........................................................................................................................................ 32
四、 實驗結果 ..........................................................................................................................................34
vi
4-1 實驗一....................................................................................................................................................... 34
4-1-1 產業類股 ......................................................................................................................................... 34
4-1-2 期貨指數 ......................................................................................................................................... 38
4-2 實驗二....................................................................................................................................................... 43
4-2-1 LSTM 丶 GRU 及 Transformer 模型預測......................................................................................... 43
4-2-2 Sliding Window.............................................................................................................................. 45
4-2-3 Ablation Experiment.................................................................................................................... 49
4-3 個案分析................................................................................................................................................... 52
五、 結論..................................................................................................................................................53
5-1 研究總結................................................................................................................................................... 53
5-2 研究限制................................................................................................................................................... 53
5-3 未來研究方向........................................................................................................................................... 54
參考文獻........................................................................................................................................................55參考文獻 參考文獻
[1] “【專題報導 4】俄烏能源糧食斷供,全球經濟衰退通膨飆破 8%|TVBS 新聞網.”
https://news.tvbs.com.tw/exhibition/ukraine-war/page4.html (accessed Apr. 07,
2023).
[2] “2022《財訊》財富管理大調查》使用哪些投資理財工具?過去一年賺錢或賠錢?.”
https://www.wealth.com.tw/articles/84ce8f9d-b58d-4ba1-9abf-ef3ae1dab7ab
(accessed Jan. 07, 2023).
[3] “上市、櫃各年度家數- 金融監督管理委員會證券期貨局全球資訊網.”
https://www.sfb.gov.tw/ch/home.jsp?id=1010&parentpath=0%2C4%2C109 (accessed
Jan. 07, 2023).
Stock Prediction
[4] 楊皓丞(Hao-Cheng Yang), “景氣循環下的投資策略 – 以台灣股市為例.” 國立台灣
大學學位論文, Jan. 01, 2021.
[5] 陳涵宇(Han-Yu Chen), “遷移學習對股價預測的影響:以台股為例.” 國立台灣大學學
位論文, Jan. 01, 2022.
[6] 林晏如(Yen-Ju Lin), "機器學習模型在台股期貨價格漲跌預測分析”, 國立中山大學,
2022
[7] 夏鶴芸(HSIA, HO-YUN), “應用深度學習與自然語言處理新技術預測股票走勢 – 以台
積電為例”, 國立臺北大學, 2020
[8] 龔千芬、郝沛毅,「融合深度神經網路與深層模糊孿生支持向量機於股價預測」,資訊管
理學報, 第二十九巻, 第四期, 頁 303-333。2022
[9] 陳信良(Chen,Hsin LIang), “運用時間數列分解法建構股價預測模型之研究”, 國立臺
北大學, 2012
[10] 楊勝凱(Yang, Sheng-Kai), "運用類神經網路與時間序列分析建構台灣 50 股價預測模
型”, 國立臺北大學, 2011
[11] W. Lu, J. Li, Y. Li, A. Sun, and J. Wang, “A CNN-LSTM-Based Model to
Forecast Stock Prices,” Complexity, vol. 2020, pp. 1–10, Nov. 2020, doi:
10.1155/2020/6622927.
[12] X. Ding, Y. Zhang, T. Liu, and J. Duan, “Deep Learning for Event-Driven
Stock Prediction”.
[13] Z.-Y. Peng and P.-C. Guo, “A Data Organization Method for LSTM and
Transformer When Predicting Chinese Banking Stock Prices,” Discrete Dyn.
Nat. Soc., vol. 2022, pp. 1–8, Jan. 2022, doi: 10.1155/2022/7119678.
[14] C. Anand, “Comparison of Stock Price Prediction Models using Pre-trained
Neural Networks,” J. Ubiquitous Comput. Commun. Technol., vol. 3, no. 2, pp.
122–134, Jul. 2021, doi: 10.36548/jucct.2021.2.005.
[15] N. Malibari, I. Katib, and R. Mehmood, “Predicting Stock Closing Prices in
Emerging Markets with Transformer Neural Networks: The Saudi Stock Exchange
Case,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 12, 2021, doi:
10.14569/IJACSA.2021.01212106.
[16] J. Liu et al., “Transformer-Based Capsule Network For Stock Movements
Prediction”.
56
[17] C. Li and G. Qian, “Stock Price Prediction Using a Frequency Decomposition
Based GRU Transformer Neural Network,” Appl. Sci., vol. 13, no. 1, p. 222,
Dec. 2022, doi: 10.3390/app13010222.
DTW
[18] “Dynamic time warping - Wikipedia.”
https://en.wikipedia.org/wiki/Dynamic_time_warping
[19] “Essi Alizadeh - An Illustrative Introduction to Dynamic Time Warping.”
https://ealizadeh.com/blog/introduction-to-dynamic-time-warping/
[20] T. Han, Q. Peng, Z. Zhu, Y. Shen, H. Huang, and N. N. Abid, “A pattern
representation of stock time series based on DTW,” Phys. Stat. Mech. Its
Appl., vol. 550, p. 124161, Jul. 2020, doi: 10.1016/j.physa.2020.124161.
[21] F. Zhao, Y. Gao, X. Li, Z. An, S. Ge, and C. Zhang, “A similarity
measurement for time series and its application to the stock market,” Expert
Syst. Appl., vol. 182, p. 115217, Nov. 2021, doi: 10.1016/j.eswa.2021.115217.
[22] D. J. Berndt and J. Clifford, “Using Dynamic Time Warping to Find Patterns
in Time Series”.
[23] N. Vaughan and B. Gabrys, “Comparing and Combining Time Series Trajectories
Using Dynamic Time Warping,” Procedia Comput. Sci., vol. 96, pp. 465–474,
2016, doi: 10.1016/j.procs.2016.08.106.
[24] S. Salvador and P. Chan, “FastDTW: Toward Accurate Dynamic Time Warping in
Linear Time and Space”.
[25] Y. Shou, N. Mamoulis, and D. W. Cheung, “Fast and Exact Warping of Time
Series Using Adaptive Segmental Approximations,” Mach. Learn., vol. 58, no.
2–3, pp. 231–267, Feb. 2005, doi: 10.1007/s10994-005-5828-3.
[26] Z. Zhang, R. Tavenard, A. Bailly, X. Tang, P. Tang, and T. Corpetti,
“Dynamic Time Warping under limited warping path length,” Inf. Sci., vol.
393, pp. 91–107, Jul. 2017, doi: 10.1016/j.ins.2017.02.018.
Transformers
[27] A. Vaswani et al., “Attention Is All You Need.” arXiv, Dec. 05, 2017.
[28] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with
Neural Networks.” arXiv, Dec. 14, 2014.
[29] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are Transformers Effective for Time
Series Forecasting?” arXiv, Aug. 17, 2022.
[30] G. Tang, M. Müller, A. Rios, and R. Sennrich, “Why Self-Attention? A
Targeted Evaluation of Neural Machine Translation Architectures.” arXiv,
Nov. 11, 2018.
[31] S. M. Kazemi et al., “Time2Vec: Learning a Vector Representation of Time.”
arXiv, Jul. 11, 2019.
[32] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding.” arXiv, May 24,
2019.
[33] G. Lample, A. Conneau, L. Denoyer, and M. Ranzato, “Unsupervised Machine
Translation Using Monolingual Corpora Only.” arXiv, Apr. 13, 2018.
[34] F. Liu et al., “Rethinking and Improving Natural Language Generation with
57
Layer-Wise Multi-View Decoding.” arXiv, Aug. 29, 2022.
[35] “Dynamic Time Warping — tslearn 0.5.3.2 documentation.”
https://tslearn.readthedocs.io/en/stable/user_guide/dtw.html
[36] A. Vaswani et al., “Attention Is All You Need.” arXiv, Dec. 05, 2017.
[37] “109 年勞工生活及就業狀況調查統計結果。-勞動部全球資訊網中文網.”
https://www.mol.gov.tw/1607/1632/1640/13386/指導教授 陳以錚(Yi-Cheng Chen) 審核日期 2023-7-3 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare