以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:49 、訪客IP:18.117.232.108
姓名 羅皓玄(Hao-Hsuan Lo) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 不同基板氮化鎵電晶體之變溫特性分析
(Analysis of variable temperature characteristics of GaN HEMTs with different substrates)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本論文針對不同基板氮化鎵電晶體之變溫特性進行研究,主要分成兩個部分討論:(1)不同基板氮化鎵電晶體之變溫靜態特性與熱阻討論;(2)不同基板氮化鎵電晶體之變溫動態特性。
本篇論文探討不同基板的氮化鎵電晶體,分別使用傳統矽基板與QST基板,後者優點為熱膨脹係數與氮化鎵較匹配,能成長較厚的緩衝層,且熱傳導係數較高,讓電晶體在高溫下操作更為穩定。藉由變溫量測得出兩種電晶體的變溫係數,其中包含導通電阻、最大汲極電流、最大轉導值、功率與電晶體漏電流等等,結果上呈現GaN-on-QST電晶體的溫度係數較低;利用汲極電流-電壓特性圖來萃取出兩種電晶體的熱阻,結果上以GaN-on-Si之熱阻較低;使用Silvaco TCAD模擬可以發現較高熱阻的電晶體會因為散熱能力較差有較高的接面溫度。
論文中第二部分則是探討這兩種電晶體的動態特性,首先利用軟切換與硬切換來評估電晶體動態電阻,GaN-on-QST在這兩種切換測試下皆得到較低的動態電阻,而硬切換會有熱電子的產生,導致兩種電晶體在硬切換測試下的動態電阻皆比軟切換高;利用脈衝量測讓電晶體達成連續的開關,在關閉狀態下量測電晶體的動態漏電流,GaN-on-Si動態漏電流較靜態漏電流大,因為電洞注入讓閘極下方導電帶變低,源極電子更容易傳輸,GaN-on-QST則因為靜態漏電流較大,電洞注入反而複合了高濃度電子,導致較低的動態漏電流;藉由雙脈衝動態量測來觀察電晶體切換情形,GaN-on-Si因為有較小的電容,開關切換特性較好,溫度升高後,兩種元件皆因為轉導值下降讓開啟特性退化,關閉時因為溫度上升而變小的電容則讓電晶體關閉特性變好。摘要(英) In this paper, the analysis of variable temperature characteristics of GaN HEMTs with different substrates has been investigated, and divided into two parts: (1) variable temperature static characteristics and thermal resistance of GaN HEMTs with different substrates; (2) variable temperature dynamic characteristics of GaN HEMTs with different substrates.
This paper discusses GaN HEMTs with different substrates which use traditional Si substrates and QST substrates respectively. The advantage of QST substrate is that the coefficient of thermal expansion match GaN, and can grow a thicker buffer. Also, GaN-on-QST is more stable to operate at high temperature than is GaN-on-Si because of higher thermal conductivity. The temperature coefficients of two GaN HEMTs are obtained by variable temperature measurement, including on-resistance, maximum drain current, maximum transconductance, power, and leakage current. The results show that GaN-on-QST has lower temperature coefficients. The thermal resistance of two GaN HEMTs is extracted by drain current-voltage characteristics, and the thermal resistance of GaN-on-Si is lower. By Silvaco TCAD simulation, it can be found that GaN HEMTs with higher thermal resistance have higher junction temperatures due to weak heat dissipation.
The second part of the paper is to discuss the dynamic characteristics of these two GaN HEMTs. Using the soft and hard switching to evaluate dynamic on-resistance, GaN-on-QST has lower dynamic on-resistance in these two switching tests; for the consecutive switching, the pulse measurement is used to evaluate the dynamic off-current in the off-state. The GaN-on-Si dynamic off-current is higher than the static, due to the lowered conduction band in the gate region induced by hole injection from p-GaN, the electrons from the source are easily transported. Due to the high static off-current of GaN-on-QST, the injected hole is recombined with the high electron concentration resulting in lower dynamic leakage. The double pulse dynamic measurement is used to observe GaN HEMTs switching behavior, GaN-on-Si has better switching characteristics because of its lower capacitance. Both GaN HEMTs turn on characteristics degrade due to transconductance decreases, the capacitance decreases induced by higher temperature makes the GaN HEMTs turn on characteristics better.關鍵字(中) ★ 氮化鎵高電子遷移率電晶體
★ QST基板
★ 動態電阻關鍵字(英) ★ GaN HEMT
★ QST substrate
★ Dynamic Ron論文目次 摘要 VI
Abstract VII
致謝 VIII
目錄 IX
圖目錄 X
表目錄 XV
第一章 緒論 1
1.1. 前言 1
1.2. 氮化鋁鎵/氮化鎵異質接面 2
1.3. 氮化鋁鎵/氮化鎵高電子遷移率電晶體成長於QST基板之研究現況 3
1.4. 研究動機與目的 17
1.5. 論文架構 17
第二章 蕭特基P型氮化鎵閘極電晶體變溫靜態特性分析 18
2.1. 元件介紹與常溫靜態特性 18
2.2. 元件變溫特性與溫度係數比較 24
2.3. 不同熱阻特性之模擬 40
2.4. 結論 45
第三章 蕭特基P型氮化鎵閘極電晶體變溫動態特性分析 46
3.1. 變溫動態導通電阻比較 46
3.1.1. 快速切換模組量測之變溫動態導通電阻 46
3.1.2. 雙脈衝動態量測之變溫動態導通電阻 51
3.2. 變溫動態漏電流分析 59
3.3. 變溫雙脈衝動態量測分析 62
3.4. 結論 70
第四章 結論 72
參考資料 73
參考文獻 [1] U. K. Mishra, L. Shen, T. E. Kazior and Y. -F. Wu, "GaN-Based RF Power Devices and Amplifiers," Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, Feb. 2008
[2] R. Brown, “A novel AlGaN/GaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness,” Phd thesis, University of Glasgow, Jul. 2015
[3] 任苙萍, “「寬能隙」半導體的現在與未來,” CompoTech Asia, Nov. 2020
[4] E. Dogmus, S. Sejil and P. Chiu, “GaN RF MARKET: APPLICATIONS, PLAYERS, TECHNOLOGY, AND SUBSTRATES 2021,” Yole Développement, June. 2021
[5] K. Geens, X. Li, M. Zhao, W. Guo, D. Wellekens, N. Posthuma, D. Fable, O. Aktas, V. Odnoblyudov, S. Decoutere, "650 V p-GaN Gate Power HEMTs on 200 mm Engineered Substrates," 2019 IEEE 7th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2019, pp. 292-296
[6] J. Anderson, D. Koehler, J Tadjer, K. Hite, A. Nath, A. Mahadik, O. Aktas, V. Odnoblyudov, C. Basceri, D. Hobart and J. Kub "Electrothermal evaluation of thick GaN epitaxial layers and AlGaN/GaN high-electron-mobility transistors on large-area engineered substrates," 2017 Appl. Phys. Express 10 126501
[7] C. Basceri, V. Odnoblyudov, O. Aktas, S. Farrens "100V to 1800V High Performance p-GaN HEMT Epitaxial Layers and E-mode Power Devices on 8-inch Commercial QST® Substrates," 2018 International Conference on Solid State Devices and Materials (SSDM), 2018, pp. 301-302
[8] X. Li, K. Geens, W. Guo, S. You, M. Zhao, D. Fahle, V. Odnoblyudov, G. Groeseneken and S. Decoutere, "Demonstration of GaN Integrated Half-Bridge With On-Chip Drivers on 200-mm Engineered Substrates," in IEEE Electron Device Letters, vol. 40, no. 9, pp. 1499-1502, Sept. 2019
[9] X. Li, K. Geens, D. Wellekens, M. Zhao, A. Magnani, N. Amirifar, B. Bakeroot, S. You, D. Fable, H. Hahn, M. Heuken, V. Odnoblyudov, O. Aktas, C. Basceri, D. Marcon, G. Groeseneken and S. Decoutere, "Integration of 650 V GaN Power ICs on 200 mm Engineered Substrates," IEEE Transactions on Semiconductor Manufacturing, vol. 33, no. 4, pp. 534-538, Nov. 2020
[10] C. Basceri, V. Odnoblyudov, O. Aktas, W. Wohlmuth, K. Geens, A. Vohra, B. Bakeroot, H. Hahn, D. Fahle, M. Heuken, S. Decoutere, "Propelling the Power Electronics Revolution: 200 mm Diameter, 100 V to 1800 V and Beyond GaN-on-QST® High Volume Device Manufacturing Platform," 2022 CS MANTECH Conference, May 9-12, 2022
[11] R. Gaska, A. Osinsky, J. W. Yang and M. S. Shur, "Self-heating in high-power AlGaN-GaN HFETs," IEEE Electron Device Letters, vol. 19, no. 3, pp. 89-91, March 1998
[12] O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel and J. Würfl, "Normally-off AlGaN/GaN HFET with p-type GaN Gate and AlGaN buffer," 2010 22nd International Symposium on Power Semiconductor Devices & IC′s (ISPSD), 2010, pp. 347-350.
[13] Silvaco Inc., "Atlas User’s Manual,"device simulation software, 2016.
[14] Agilent technologies,"Agilent N1267A HVSMU HCSMU Fast Switch," 2013
[15] Keysight technologies, "Keysight PD1500A Dynamic Power Device Analyzer/Double-pulse tester," 2021.
[16] Keysight technologies "PD1500A Datasheets," 2021.
[17] G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, M. Meneghini and E. Zanoni, "Reliability of GaN High-Electron-Mobility Transistors: State of the Art and Perspectives," IEEE Transactions on Device and Materials Reliability, vol. 8, no. 2, pp. 332-343, June 2008
[18] Y. Wang, J. Wei, S. Yang, J. Lei, M. Hua and K. J. Chen, "Investigation of Dynamic IOFF Under Switching Operation in Schottky-Type p-GaN Gate HEMTs," IEEE Transactions on Electron Devices, vol. 66, no. 9, pp. 3789-3794, Sept. 2019
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2022-11-15 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare