參考文獻 |
6參考文獻
參考書目
[1] Valdez-de-Leon, Omar. 「A Digital Maturity Model for Telecommunications Service Providers」. Technology Innovation Management Review 6, 期 8 (2016年): 19–32.
[2] Ivančić, Lucija, Vesna Vukšić及Mario Spremić. 「Mastering the Digital Transformation Process: Business Practices and Lessons Learned」. Technology Innovation Management Review 9, 期 2 (2019年): 36–50. https://doi.org/10.22215/timreview/1217.
[3] Snežana, Radukić, Mastilo Zoran及Kostić Zorana. 「Effects of Digital Transformation and Network Externalities in the Telecommunication Markets」. ECONOMICS 7, 期 2 (2019年12月1日): 31–42. https://doi.org/10.2478/eoik-2019-0019.
[5] Mezmaz, M., N. Melab, Y. Kessaci, Y. C. Lee, E. -G. Talbi, A. Y. Zomaya及D. Tuyttens. 「A Parallel Bi-Objective Hybrid Metaheuristic for Energy-Aware Scheduling for Cloud Computing Systems」. Journal of Parallel and Distributed Computing 71, 期 11 (2011年11月1日): 1497–1508. https://doi.org/10.1016/j.jpdc.2011.04.007.
[6] Armbrust, Michael, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee, 等. 「A view of cloud computing」. Communications of the ACM 53, 期 4 (2010年4月1日): 50–58. https://doi.org/10.1145/1721654.1721672.
[7] Dikaiakos, Marios D., Dimitrios Katsaros, Pankaj Mehra, George Pallis及Athena Vakali. 「Cloud Computing: Distributed Internet Computing for IT and Scientific Research」. IEEE Internet Computing 13, 期 5 (2009年9月): 10–13. https://doi.org/10.1109/MIC.2009.103.
[8] Li, Qiang, 及Yike Guo. 「Optimization of Resource Scheduling in Cloud Computing」. 收入 2010 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 315–20, 2010. https://doi.org/10.1109/SYNASC.2010.8.
[9] Buyya, Rajkumar. 「Market-Oriented Cloud Computing: Vision, Hype, and Reality of Delivering Computing as the 5th Utility」. 收入 2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 1–1, 2009. https://doi.org/10.1109/CCGRID.2009.97.
[10] 「NIST Cloud Computing Program - NCCP」. NIST. 引見於 2023年4月18日. https://www.nist.gov/programs-projects/nist-cloud-computing-program-nccp.
[16] Wang, Yuanbin, Kangjie Hong, Jun Zou, Tao Peng及Huayong Yang. 「A CNN-Based Visual Sorting System With Cloud-Edge Computing for Flexible Manufacturing Systems」. IEEE Transactions on Industrial Informatics 16, 期 7 (2020年7月): 4726–35. https://doi.org/10.1109/TII.2019.2947539.
[17] Wang, Xin, 及Hong Shen. 「A Scalable Deep Reinforcement Learning Model for Online Scheduling Coflows of Multi-Stage Jobs for High Performance Computing」. arXiv, 2021年12月21日. https://doi.org/10.48550/arXiv.2112.11055.
[18] Peng, Yanghua, Yixin Bao, Yangrui Chen, Chuan Wu及Chuanxiong Guo. 「Optimus: an efficient dynamic resource scheduler for deep learning clusters」. 收入 Proceedings of the Thirteenth EuroSys Conference, 1–14. EuroSys ’18. New York, NY, USA: Association for Computing Machinery, 2018. https://doi.org/10.1145/3190508.3190517.
[19] Chang, Bao, Hsiu-Fen Tsai及Yu-Chieh Lin. 「Optimizing Big Data Retrieval and Job Scheduling Using Deep Learning Approaches」. Computer Modeling in Engineering & Sciences 134, 期 2 (2022年): 783–815. https://doi.org/10.32604/cmes.2022.020128.
[20] Hadjar, Karim, 及Ahmed Jedidi. 「A New Approach for Scheduling Tasks and/or Jobs in Big Data Cluster」. 收入 2019 4th MEC International Conference on Big Data and Smart City (ICBDSC), 1–4, 2019. https://doi.org/10.1109/ICBDSC.2019.8645613.
[21] Swarup, Shashank, Elhadi M. Shakshuki及Ansar Yasar. 「Task Scheduling in Cloud Using Deep Reinforcement Learning」. Procedia Computer Science, The 12th International Conference on Ambient Systems, Networks and Technologies (ANT) / The 4th International Conference on Emerging Data and Industry 4.0 (EDI40) / Affiliated Workshops, 184 (2021年1月1日): 42–51. https://doi.org/10.1016/j.procs.2021.03.016.
[22] Ye, Yufei, Xiaoqin Ren, Jin Wang, Lingxiao Xu, Wenxia Guo, Wenqiang Huang及Wenhong Tian. 「A New Approach for Resource Scheduling with Deep Reinforcement Learning」. arXiv, 2018年6月21日. https://doi.org/10.48550/arXiv.1806.08122.
[23] Saraswathi, A. T., Y. R. A. Kalaashri及S. Padmavathi. 「Dynamic Resource Allocation Scheme in Cloud Computing」. Procedia Computer Science, Graph Algorithms, High Performance Implementations and Its Applications ( ICGHIA 2014 ), 47 (2015年1月1日): 30–36. https://doi.org/10.1016/j.procs.2015.03.180.
[24] Alizadeh. 「Learning scheduling algorithms for data processing clusters」. 收入 Proceedings of the ACM Special Interest Group on Data Communication, 270–88. SIGCOMM ’19. New York, NY, USA: Association for Computing Machinery, 2019. https://doi.org/10.1145/3341302.3342080.
[25] Xu, Jianqiao, Zhuohan Xu及Bing Shi. 「Deep Reinforcement Learning Based Resource Allocation Strategy in Cloud-Edge Computing System」. Frontiers in Bioengineering and Biotechnology 10 (2022年). https://www.frontiersin.org/articles/10.3389/fbioe.2022.908056.
[26] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver及Daan Wierstra. 「Continuous control with deep reinforcement learning」. arXiv, 2019年7月5日. https://doi.org/10.48550/arXiv.1509.02971.
[27] Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke及Andrew Rabinovich. 「Going Deeper with Convolutions」. arXiv, 2014年9月16日. https://doi.org/10.48550/arXiv.1409.4842.
[28] Howard, Andrew G., Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto及Hartwig Adam. 「MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications」. arXiv, 2017年4月16日. https://doi.org/10.48550/arXiv.1704.04861.
[29] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, 等. 「Human-Level Control through Deep Reinforcement Learning」. Nature 518, 期 7540 (2015年2月): 529–33. https://doi.org/10.1038/nature14236.
[30] Hasselt, Hado van, Arthur Guez及David Silver. 「Deep Reinforcement Learning with Double Q-learning」. arXiv, 2015年12月8日. https://doi.org/10.48550/arXiv.1509.06461.
[31] Wang, Ziyu, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot及Nando de Freitas. 「Dueling Network Architectures for Deep Reinforcement Learning」. arXiv, 2016年4月5日. https://doi.org/10.48550/arXiv.1511.06581.
[32] Han, Bao-An, 及Jian-Jun Yang. 「Research on Adaptive Job Shop Scheduling Problems Based on Dueling Double DQN」. IEEE Access 8 (2020年): 186474–95. https://doi.org/10.1109/ACCESS.2020.3029868.
[33] Gu, Shixiang, Timothy Lillicrap, Ilya Sutskever及Sergey Levine. 「Continuous Deep Q-Learning with Model-based Acceleration」. arXiv, 2016年3月2日. https://doi.org/10.48550/arXiv.1603.00748.
[34] Gu, Shixiang, Timothy Lillicrap, Ilya Sutskever及Sergey Levine. 「Continuous Deep Q-Learning with Model-based Acceleration」. arXiv, 2016年3月2日. https://doi.org/10.48550/arXiv.1603.00748.
參考網站
[4] https://www.techbang.com/posts/103904-far-eastone-and-microsoft-form-a-strategic-alliance
[11] https://learn.microsoft.com/zh-tw/azure/cost-management-billing/reservations/exchange-and-refund-azure-reservations
[12] https://zh.wikipedia.org/zh-tw/Microsoft_Azure
[13] https://learn.microsoft.com/zh-tw/azure/cost-management-billing/reservations/manage-reserved-vm-instance#change-optimize-setting-for-reserved-vm-instances
[14] https://zh.wikipedia.org/wiki/Databricks
[15] https://learn.microsoft.com/zh-tw/azure/databricks/introduction/
https://azure.microsoft.com/zh-tw/pricing/details/virtual-machines/linux/#pricing
https://azure.microsoft.com/en-us/pricing/details/databricks/ |