博碩士論文 109521045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.226.180.253
姓名 陳威嘉(Wei-Chia Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鎵電晶體在雙脈衝動態量測後之特性分析
(Characteristics analysis of GaN HEMTs after double pulse test)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文為探討蕭特基p型 氮化鎵 閘極高電子遷移率電晶體在雙脈衝動態量測的研究,主要分成兩個部分進行討論:(1)分析不同負載以及不同量測條件的雙脈衝動態量測在動態特性上的變化;(2)觀察在不同量測條件的雙脈衝動態量測後對元件所產生的影響以及元件後續的恢復情形。

本篇論文使用雙脈衝動態量測對氮化鎵元件進行研究分別進行電感式負載和電阻式負載的雙脈衝動態量測,以接近實際量測電路的雙脈衝動態模擬驗證量測結果,並提出理想的雙脈衝動態電路。為了確認引起震盪的原因,以電感式負載電路針對寄生效應的有無進行模擬,得出轉板寄生效應對模擬的影響。使用不同量測條 件進行電阻式負載雙脈衝動態量測,得出不同量測條件使量測波形和動態特性產生的變化,提出波形變化的可能因素,最後得出動態特性出現差異的原因。

在進行電阻式負載雙脈衝動態量測後以ID-VGS特性曲線觀察元件的VTH偏移和恢復的情形。再使用不同外部RG和不同關閉VDS、開啟ID的雙脈衝動態量測觀察元件前後的區別,得出不同外部 RG之間不會影響雙脈衝動態量後的特性,並且主導雙脈衝動態量測後產生影響的是關閉VDS。透過變溫加速恢復的方式,搭配阿瑞尼斯圖,得出陷阱的活化能分別為0.20和0.09 eV,再將結果帶入雙脈衝動態模擬,得出雙脈衝動態量測使ID-VGS變化的機制。
摘要(英) In this study, a double pulse test of Schottky p-GaN gate high-electron-mobility transistors has been investigated. Based on the double pulse test, is divided into the following two different sections: (1) Analyzed the changes in dynamic characteristics of the double pulse test with different loads and different measurement conditions, (2) Observed the influence and recovery on the device after a double pulse test with different measurement conditions.

In this paper, the double pulse test is used to study the GaN device, the double pulse test of the inductive load and the resistive load is carried out respectively, and verify the measurement results with a double pulse test simulation close to the actual measurement circuit. An ideal double pulse test circuit is proposed. To confirm the cause of the oscillation, the inductive load circuit is used to simulate the with and without parasitic effects, and the influence of the parasitic effect of the PCB on the simulation is obtained. Different measurement conditions are used for the resistive load double pulse test, and the variations of measurement waveform and parameters caused by different measurement conditions are obtained.

After the resistive load double pulse test, the VTH shift and recovery of the device were investigated with the ID-VGS characteristic curve. Observe the difference between the devices before and after the double pulse test with different external RG and different VDS,off. It is concluded that different external RG will not affect the characteristics after the double pulse test, but are dominated by VDS,off. Through accelerating the recovery by varying the temperature, with the Arrhenius plot, the activation energies of the traps are obtained to be 0.20 and 0.09 eV respectively, and then the results are used in the double pulse test simulation to obtain the mechanism of the ID-VGS shift caused by the double pulse test.
關鍵字(中) ★ 氮化鎵高電子遷移率電晶體
★ 臨界電壓偏移
★ 雙脈衝量測
★ 捕獲效應
關鍵字(英) ★ GaN HEMT
★ threshold voltage shift
★ double pulse test
★ trapping effect
論文目次 摘要 VI
Abstract VII
致謝 VIII
目錄 IX
圖目錄 XI
表目錄 XVIII
第一章 緒論 1
1.1 前言 1
1.2 氮化鋁鎵/氮化鎵異質結構 2
1.3 氮化鎵電晶體之動態特性文獻回顧 4
1.4 雙脈衝動態量測 13
1.5 研究動機與目的 17
1.6 論文架構 18
第二章 蕭特基p型氮化鎵閘極電晶體之雙脈衝動態量測特性分析 19
2.1 元件介紹與雙脈衝動態量測分析 19
2.1.1 元件介紹 19
2.1.2 規格書與實際量測環境之差異 21
2.1.3 理論與實際量測之比較 30
2.2 雙脈衝電路之特性模擬 36
2.2.1 模擬與實際量測之比較 36
2.2.2 理想與非理想之模擬比較 40
2.3 不同條件之雙脈衝動態量測特性分析 44
2.3.1 不同汲極關閉電壓/開啟電流之雙脈衝動態量測特性 45
2.3.2 不同閘極偏壓之雙脈衝動態量測特性 56
2.3.3 不同閘極電阻之雙脈衝動態量測特性 62
2.3.4 不同開關時間之雙脈衝動態量測特性 65
2.4 結論 67
第三章 蕭特基p型氮化鎵閘極電晶體在雙脈衝動態量測後之恢復特性分析 69
3.1 雙脈衝動態量測後之恢復特性 69
3.2 不同雙脈衝動態量測條件之恢復特性分析 73
3.2.1 不同閘極電阻的雙脈衝動態量測之恢復特性 73
3.2.2 不同汲極關閉電壓/開啟電流的雙脈衝動態量測之恢復特性 77
3.3 雙脈衝動態量測後之變溫加速恢復特性 90
3.3.1 不同汲極關閉電壓/開啟電流的雙脈衝動態量測之變溫恢復特性 90
3.3.2 不同汲極關閉電壓/開啟電流的雙脈衝動態量測之活化能分析 94
3.3.3 雙脈衝動態量測之捕獲機制分析 95
3.4 結論 102
第四章 結論 104
參考文獻 105
參考文獻 [1] S. K. Aarief, “Diffusion Soldering for the High-temperature Packaging of Power Electronics,” FAU Studien aus dem Maschinenbau, 2018.
[2] S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev., vol. 5, no. 1, Jan. 2018.
[3] R. Brown, “A novel AlGaN/GaN based enhancement-mode high electron mobility transistor with sub-critical barrier thickness,” Phd thesis, University of Glasgow, Jul. 2015.
[4] D. Balaz, “Current Collapse and Device Degradation in AlGaN/GaN Heterostructure Field Effect Transistors,” Phd thesis, University of Glasgow, 2011.
[5] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp.3222-3233, Mar. 1999.
[6] S. Sharbati, I. Gharibshahian, T. Ebel, A. A. Orouji, W. T. Franke, “Analytical Model for Two‑Dimensional Electron Gas Charge Density in Recessed‑Gate GaN High‑Electron‑Mobility Transistors,” Journal of Electronic Materials, 50, pp.3923–3929, Apr. 2021.
[7] O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, “Normally-off AlGaN/GaN HFET with p-type GaN gate and AlGaN buffer,” 2010 22nd International Symposium on Power Semiconductor Devices & IC′s (ISPSD), pp.347-350, June. 2010.
[8] X. Sun, Y. Zhang, K. S. Chang-Liao, T. Palacios, T. P. Ma, “Impacts of fluorine-treatment on E-mode AlGaN/GaN MOS-HEMTs,” 2014 IEEE International Electron Devices Meeting, pp. 17.3.1-17.3.4, Dec. 2014.
[9] X. Huang, Z. Liu, Q. Li, F. Lee, “Evaluation and application of 600V GaN HEMT in cascode structure,” 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp.1279-1286, Mar. 2013.
[10] J. Wu, W. Lu, P. K. L. Yu, “Normally-OFF AlGaN/GaN MOS-HEMT with a two-step gate recess,” 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp.594-596, Oct. 2015.
[11] Y. Wang, J. Wei, S. Yang, J. Lei, M. Hua, K. J. Chen, “Investigation of Dynamic IOFF Under Switching Operation in Schottky-Type p-GaN Gate HEMTs,” IEEE Transactions on Electron Devices, vol. 66, no. 9, pp. 3789–3794, Sept. 2019.
[12] Z. Jiang, M. Hua, X. Huang, L. Li, C. Wang, J. Chen, K. J. Chen, “Negative Gate Bias Induced Dynamic On-resistance Degradation in Schottky-type p-GaN Gate HEMTs,” IEEE Transactions on Power Electronics, Nov. 2021.
[13] F. Zhou, W. Xu, F. Ren, Y. Xia, L. Wu, T. Zhu, D. Chen, R. Zhang, Y. Zheng, H. Lu, “1.2 kV/25 A Normally off P-N Junction/AlGaN/GaN HEMTs With Nanosecond Switching Characteristics and Robust Overvoltage Capability,” IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 26–30, Jan. 2022.
[14] C. Zhang, S. Liu, S. Li, Y. Ma, W. Lu, J. Huang, W. Sun, Z. Yang, Y. Zhu, L. Ni, “Investigation on the Degradation Mechanism for GaN Cascode Device Under Repetitive Hard-Switching Stress,” IEEE Transactions on Power Electronics, vol. 37, no. 5, pp. 6009-6017, May. 2022.
[15] J. P. Kozak, Q. Song, J. Liu, R. Zhang, Q. Li, W. Saito, Y. Zhang, “Accelerating the Recovery of p-Gate GaN HEMTs after Overvoltage Stresses,” 2022 IEEE International Reliability Physics Symposium (IRPS), pp. P22-1-P22-5, Mar. 2022.
[16] G. Zu, H. Wen, Y. Zhu, R. Zhong, Q. Bu, W. Liu, Y. Zhao, M. Cui, “Review of Pulse Test Setup for the Switching Characterization of GaN Power Devices,” IEEE Transactions on Electron Devices, vol. 69, no. 6, pp. 3003-3013, June. 2022.
[17] Y. Zhang and C. Qu, “Table-Based Direct Power Control for Three-Phase AC/DC Converters Under Unbalanced Grid Voltages,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7090-7099, Dec. 2015.
[18] J. Schweickhardt, K. Hermanns and M. Herdin, “Tips & Tricks on Double Pulse Testing,” Rohde & Schwarz Application Note, Mar. 2021.
[19] “GS66508B Datasheet,” GaN System Inc., 2018.
[20] “TO-247, GS66508B GaN board Setup Guide,” Keysight Technologies, 2021.
[21] “FFSH5065A-F155 Datasheet,” ON Semiconductor Inc., 2020.
[22] “GN008 Application Note,” GaN Systems Inc., Mar. 08, 2022.
[23] J. Joh and J. A. del Alamo, “A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors,” IEEE Transactions on Electron Devices, vol. 58, no. 1, pp. 132-140, Jan. 2011.
[24] J. Hu, S. Stoffels, S. Lenci, B. Bakeroot, R. Venegas, G. Groeseneken, and S. Decoutere, “Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode,” Appl. Phys. Lett., vol. 106, issue 8, Feb. 2015.
[25] A. Y. Polyakov, I. H. Lee, “Deep traps in GaN-based structures as affecting the performance of GaN devices,” Materials Science and Engineering: R: Reports, vol. 94, pp. 1-56, Aug. 2015.
[26] R. Zhang, J. P. Kozak, M. Xiao, J. Liu and Y. Zhang, "Surge-Energy and Overvoltage Ruggedness of P-Gate GaN HEMTs," IEEE Transactions on Power Electronics, vol. 35, no. 12, pp. 13409-13419, Dec. 2020.
[27] Atlas User’s Manual, Silvaco Inc., Aug. 2016.
[28] R. J. Trew, D. S. Green and J. B. Shealy, "AlGaN/GaN HFET reliability," IEEE Microwave Magazine, vol. 10, no. 4, pp. 116-127, June. 2009.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2022-11-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明