參考文獻 |
Reference
[1] 自由時報電子報, “中央資安預算無特別增加 立院國民黨團批蔡政府不重視 - 政治,” 自由時報電子報, Dec. 07, 2022. https://news.ltn.com.tw/news/politics/breakingnews/4147538 (accessed Mar. 19, 2023).
[2] 聯合新聞網, “台灣已成駭客天堂,” 台灣已成駭客天堂. https://topic.udn.com/event/newmedia_hacker_taiwan (accessed May 08, 2023).
[3] “解除分期竄第一 內政部公布109年詐騙手法排行榜,” 內政部全球資訊網-中文網, Feb. 02, 2021. http://www.moi.gov.tw/News_Content.aspx?n=4&s=212607 (accessed Jan. 06, 2023).
[4] “適用於入侵偵測之高準確度階層式分群演算法 - 政大學術集成.” Accessed: Apr. 10, 2023. [Online]. Available: https://ah.nccu.edu.tw/item?item_id=130764
[5] “數據科學中常見9種距離度量方法,內含歐氏距離、切比雪夫距離等.” https://min.news/technique/ad5eb4d698294c94d2e096c24bb682ec.html (accessed May 05, 2023).
Log File Analysis
[6] R. R. Abdalla and A. K. Jumaa, “Log File Analysis Based on Machine Learning: A Survey: Survey,” UHD J SCI TECH, vol. 6, no. 2, pp. 77–84, Oct. 2022, doi: 10.21928/uhdjst.v6n2y2022.pp77-84.
[7] H. Saleous and Z. Trabelsi, “Enhancing Firewall Filter Performance Using Neural Networks,” in 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco: IEEE, Jun. 2019, pp. 1853–1859. doi: 10.1109/IWCMC.2019.8766576.
[8] K. Neupane, R. Haddad, and L. Chen, “Next Generation Firewall for Network Security: A Survey,” in SoutheastCon 2018, Apr. 2018, pp. 1–6. doi: 10.1109/SECON.2018.8478973.
[9] M. Landauer, F. Skopik, M. Wurzenberger, and A. Rauber, “System log clustering approaches for cyber security applications: A survey,” Computers & Security, vol. 92, p. 101739, May 2020, doi: 10.1016/j.cose.2020.101739.
[10] L. Han, “Research of K-MEANS Algorithm Based on Information Entropy in Anomaly Detection,” in 2012 Fourth International Conference on Multimedia Information Networking and Security, Nanjing, China: IEEE, Nov. 2012, pp. 71–74. doi: 10.1109/MINES.2012.169.
[11] R. Kumari, Sheetanshu, M. K. Singh, R. Jha, and N. K. Singh, “Anomaly detection in network traffic using K-mean clustering,” in 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India: IEEE, Mar. 2016, pp. 387–393. doi: 10.1109/RAIT.2016.7507933.
[12] M. F. Lima, B. B. Zarpelao, L. D. H. Sampaio, and M. L. P. Jr, “Anomaly detection using baseline and K-means clustering”.
[13] Y. Y. Aung and M. M. Min, “An Analysis of K-means Algorithm Based Network Intrusion Detection System,” Adv. sci. technol. eng. syst. j., vol. 3, no. 1, pp. 496–501, Feb. 2018, doi: 10.25046/aj030160.
Related Model Discussion
[14] W. Lu and I. Traore, “Unsupervised anomaly detection using an evolutionary extension of k-means algorithm,” IJICS, vol. 2, no. 2, p. 107, 2008, doi: 10.1504/IJICS.2008.018513.
[15] Y. C. Chen, “如何辨別機器學習模型的好壞?秒懂Confusion Matrix,” YC Note, 12:00:00+08:00. https://ycc.idv.tw/confusion-matrix.html (accessed Jan. 11, 2023).
[16] H. E. As-Suhbani and S. D. Khamitkar, “Classification of Firewall Logs Using Supervised Machine Learning Algorithms,” ijcse, vol. 7, no. 8, pp. 301–304, Aug. 2019, doi: 10.26438/ijcse/v7i8.301304.
[17] E. Ucar and E. Ozhan, “The Analysis of Firewall Policy Through Machine Learning and Data Mining,” Wireless Pers Commun, vol. 96, no. 2, pp. 2891–2909, Sep. 2017, doi: 10.1007/s11277-017-4330-0.
[18] B. A. AL-Tarawneh and H. Bani-Salameh, “Classification of Firewall Logs Actions Using Machine Learning Techniques and Deep Neural Network”.
[19] V. K. Navya, J. Adithi, D. Rudrawal, H. Tailor, and N. James, “Intrusion Detection System using Deep Neural Networks (DNN),” in 2021 International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Oct. 2021, pp. 1–6. doi: 10.1109/ICAECA52838.2021.9675513.
[20] C. Lillmond and G. Suddul, “A Deep Neural Network Approach for Analysis of Firewall Log Data,” Sri Lanka, 2021.
[21] M. Aljabri, A. A. Alahmadi, R. M. A. Mohammad, M. Aboulnour, D. M. Alomari, and S. H. Almotiri, “Classification of Firewall Log Data Using Multiclass Machine Learning Models,” Electronics, vol. 11, no. 12, p. 1851, Jun. 2022, doi: 10.3390/electronics11121851.
[22] O. Faker and E. Dogdu, “Intrusion Detection Using Big Data and Deep Learning Techniques,” in Proceedings of the 2019 ACM Southeast Conference, in ACM SE ’19. New York, NY, USA: Association for Computing Machinery, Apr. 2019, pp. 86–93. doi: 10.1145/3299815.3314439.
[23] M. Ugurlu and I. A. Dogru, “A Survey on Deep Learning Based Intrusion Detection System,” in 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey: IEEE, Sep. 2019, pp. 223–228. doi: 10.1109/UBMK.2019.8907206.
[24] S. P. Thirimanne, L. Jayawardana, L. Yasakethu, P. Liyanaarachchi, and C. Hewage, “Deep Neural Network Based Real-Time Intrusion Detection System,” SN COMPUT. SCI., vol. 3, no. 2, p. 145, Jan. 2022, doi: 10.1007/s42979-022-01031-1.
[25] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, “Deep Learning Approach Combining Sparse Autoencoder With SVM for Network Intrusion Detection,” IEEE Access, vol. 6, pp. 52843–52856, 2018, doi: 10.1109/ACCESS.2018.2869577.
[26] T. Schindler, “Anomaly Detection in Log Data using Graph Databases and Machine Learning to Defend Advanced Persistent Threats,” 2017, doi: 10.18420/in2017_241.
[27] Xiao L.-Z., “An Algorithm for Automatic Clustering Number Determination in Networks Intrusion Detection: An Algorithm for Automatic Clustering Number Determination in Networks Intrusion Detection,” Journal of Software, vol. 19, no. 8, pp. 2140–2148, Oct. 2008, doi: 10.3724/SP.J.1001.2008.02140.
[28] D. Sharma, V. Wason, and P. Johri, “Optimized Classification of Firewall Log Data using Heterogeneous Ensemble Techniques,” in 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Mar. 2021, pp. 368–372. doi: 10.1109/ICACITE51222.2021.9404732.
[29] F. Ertam and M. Kaya, “Classification of firewall log files with multiclass support vector machine,” in 2018 6th International Symposium on Digital Forensic and Security (ISDFS), Antalya: IEEE, Mar. 2018, pp. 1–4. doi: 10.1109/ISDFS.2018.8355382.
[30] Shatt Alarab University College and H. AL-Behadili, “Decision Tree for Multiclass Classification of Firewall Access,” IJIES, vol. 14, no. 3, pp. 294–302, Jun. 2021, doi: 10.22266/ijies2021.0630.25.
[31] Yanxin Wang, Johnny Wong, and A. Miner, “Anomaly intrusion detection using one class SVM,” in Proceedings from the Fifth Annual IEEE SMC Information Assurance Workshop, 2004., West Point, NY, USA: IEEE, 2004, pp. 358–364. doi: 10.1109/IAW.2004.1437839.
[32] A. Farzad and T. A. Gulliver, “Unsupervised log message anomaly detection,” ICT Express, vol. 6, no. 3, pp. 229–237, Sep. 2020, doi: 10.1016/j.icte.2020.06.003.
[33] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu, “Experience Report: Deep Learning-based System Log Analysis for Anomaly Detection.” arXiv, Jan. 10, 2022. Accessed: Dec. 17, 2022. [Online]. Available: http://arxiv.org/abs/2107.05908
[34] M. Du, F. Li, G. Zheng, and V. Srikumar, “DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas Texas USA: ACM, Oct. 2017, pp. 1285–1298. doi: 10.1145/3133956.3134015.
[35] O. Alghushairy, R. Alsini, T. Soule, and X. Ma, “A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data Streams,” BDCC, vol. 5, no. 1, p. 1, Dec. 2020, doi: 10.3390/bdcc5010001.
[36] K. N. A. Prethi and S. Nithya, “DNN BASED INTELLIGENT IDS FOR ANOMALY DETECTION”.
[37] 蔡秉任,“針對未知攻擊辨識之混合式入侵偵測系統”,國立交通大學資訊科學 與工程研究所, 2014
[38] 黃蕙嫈, “應用機器學習技術於入侵偵測系統分類之研究”,國防大學理工學院 資訊管理工程學系, 2019
[39] 莊雅淳,“入侵偵測演算法效益之評估” , 中國文化大學商學院資訊管理管理 研究所,2010. [Online]. Available: http://ir.lib.pccu.edu.tw/retrieve/48372/%E8%8E%8A%E9%9B%85%E6%B7%B3- 2.pdf
[40] Y. Yang, K. Zheng, C. Wu, X. Niu, and Y. Yang, “Building an Effective Intrusion Detection System Using the Modified Density Peak Clustering Algorithm and Deep Belief Networks,” Applied Sciences, vol. 9, no. 2, Art. no. 2, Jan. 2019, doi: 10.3390/app9020238.
[41] E. Tung, “SMOTE + ENN : 解決數據不平衡建模的採樣方法,” 數學、人工智慧與蟒蛇, Oct. 27, 2019. https://medium.com/%E6%95%B8%E5%AD%B8-%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7%E8%88%87%E8%9F%92%E8%9B%87/smote-enn-%E8%A7%A3%E6%B1%BA%E6%95%B8%E6%93%9A%E4%B8%8D%E5%B9%B3%E8%A1%A1%E5%BB%BA%E6%A8%A1%E7%9A%84%E6%8E%A1%E6%A8%A3%E6%96%B9%E6%B3%95-cdb6324b711e (accessed Apr. 14, 2023).
[42] 解滨, X. I. E. Bin, 董新玉, D. Xinyu, 梁皓伟, and L. Haowei, “基于三支动态阈值K-means聚类的入侵检测算法,” Jun. 15, 2020. http://www.xml-data.org/ZZDXXBLXB/html/9003f91b-a6b3-48bd-a122-5dc0d5aeab0b.htm (accessed Dec. 31, 2022).
[43] S. Kumar, “Silhouette Method — Better than Elbow Method to find Optimal Clusters,” Medium, Sep. 21, 2021. https://towardsdatascience.com/silhouette-method-better-than-elbow-method-to-find-optimal-clusters-378d62ff6891 (accessed Dec. 17, 2022).
Example dataset
[44] “UCI Machine Learning Repository: Internet Firewall Data Data Set.” https://archive.ics.uci.edu/ml/datasets/Internet+Firewall+Data# (accessed Mar. 18, 2023).
[45] “臺灣高等法院 106 年度上訴字第 593 號刑事判決.” https://judgment.judicial.gov.tw/FJUD/data.aspx?ty=JD&id=TPHM,106%2c%e4%b8%8a%e8%a8%b4%2c593%2c20170518%2c1 (accessed Jun. 14, 2023). |