博碩士論文 110423073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.117.233.156
姓名 吳宜庭(Yi-Ting Wu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 時間序列預測研究──使用特徵選取、複數模糊模型和GD-WOA-RLSE機器學習方法
(Research on Time Series Prediction── An Approach Using Feature Selection, Complex Fuzzy, and GD-WOA-RLSE Machine Learning)
相關論文
★ 變數選擇在智慧型系統與應用之研究★ 智慧型系統之參數估測研究─一個新的DE方法
★ 合奏學習式智慧型系統在分類問題之研究★ 複數模糊類神經系統於多類別分類問題之研究
★ 融入後設認知策略的複數模糊認知圖於分類問題之研究★ 分類問題之研究-以複數型模糊類神經系統為方法
★ 智慧型差分自回歸移動平均模型於時間序列預測之研究★ 計算智慧及複數模糊集於適應性影像處理之研究
★ 智慧型模糊類神經計算模式使用複數模糊集合與ARIMA模型★ Empirical Study on IEEE 802.11 Wireless Signal – A Case Study at the NCU Campus
★ 自我建構式複數模糊ARIMA於指數波動預測之研究★ 資料前處理之研究:以基因演算法為例
★ 針對文字分類的支援向量導向樣本選取★ 智慧型區間預測之研究─以複數模糊類神經、支持向量迴歸、拔靴統計為方法
★ 複數模糊類神經網路在多目標財經預測★ 智慧型模糊類神經計算使用非對稱模糊類神經網路系統與球型複數模糊集
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 時間序列分析與機器學習是當今重要議題,隨著大數據時代來臨,資料與特徵維度的增加使得模型在運算更具挑戰性。因此,本次研究將會專注在如何以有限資源減緩資料維度與參數量對模型的風險,提出了一種新的全複數模糊模型(SCFM),利用複數型態結合輸入維度來達到降維的目的,進而減少模型計算複雜度與計算成本,其中,以投影式球形複數模糊集的複數輸出達到雙目標預測。其次,本研究基於傳遞熵的概念改良多目標特徵選擇演算法,為模型提供更有力之特徵,透過輸入空間最適區塊挑選法(GSIS)挑選可用區塊降低模型參數與規則數量,並於機器學習中提出一個新的混合式演算法,稱作GD-WOA-RLE,混和兩種演算法,以高斯鯨群演算法(GD-WOA)更新模型前鑑部參數及以遞迴最小平方估計法(RLSE)更新後鑑部參數。本次研究也透過三個實驗來驗證模型效能,包含兩種單目標預測:以函數逼近檢驗GSIS效能、透過預測台灣積體電路製造(TSMC)的股價資訊驗證所提出之特徵選取的有效性與優勢,最後同時預測貨幣市場中USD2EUR與CNY2EUR的匯率。從實驗結果,驗證了SCFM配合GD-WOA-RLSE在單、雙目標的預測上均有不錯的效能,並且能夠透過減少參數與模型大小使得模型有更好的表現。
摘要(英) Time series analysis and machine learning are currently important issue. With the rise of the big data, the increase in the number of data and feature dimensions presents challenges in model computation. Therefore, this study focuses on mitigating the risks of high input dimensionality and parameter quantity on models with limited resources. We propose a novel approach called the Sphere Complex Fuzzy Model (SCFM), which combines complex-valued inputs to achieve dimensionality reduction to reduce model computational complexity and costs. The SCFM incorporates the use of Sphere Complex Fuzzy Sets with Projection as the fuzzy sets for dual-target prediction. Furthermore, we enhance the multi-target feature selection algorithm based on transfer entropy, providing more powerful features for the model. We introduce the grid-type selection of input space (GSIS) to select suitable blocks within the input space, reducing the number of model parameters and rules. Additionally, we propose a hybrid algorithm, GD-WOA-RLE, which combines the gaussian distribution-based whale optimization algorithm (GD-WOA) for updating the parameters of If-parts and the recursive least squares estimator (RLSE) for updating the then-parts parameters. We conduct three experiments to evaluate the performance of model, including function approximation using GSIS, predicting stock prices of TSMC, and forecasting exchange rates of USD2EUR and CNY2EUR. The experimental results demonstrate the effectiveness and advantages of the proposed feature selection and the performance of the SCFM with GD-WOA-RLE in single- and dual-target predictions. By reducing parameters and model size, the proposed approach achieves improved model performance.
關鍵字(中) ★ 傳遞熵
★ 特徵選擇
★ 複數模糊系統
★ 球型複數模糊集
★ 複數減法分群法
★ 機器學習
★ 雙目標預測
關鍵字(英) ★ Transfer entropy
★ feature selection
★ complex fuzzy systems
★ sphere complex fuzzy sets
★ subtractive clustering for complex numbers
★ machine learning
★ dual-target prediction
論文目次 摘要 i
Abstract ii
誌謝 iii
目次 iv
圖目次 vi
表目次 vii
記號說明表 ix
專有名詞縮寫表 xi
第一章 緒論 1
1.1. 研究動機與背景 1
1.2. 研究方法概述 2
1.3. 論文架構 3
第二章 文獻探討 5
2.1. 特徵選取 5
2.2. 資訊理論 6
2.2.1. 資訊熵與互資訊 6
2.2.2. 相對熵與互資訊 7
2.3. 傳遞熵 8
2.3.1. 馬可夫過程 8
2.3.2. 傳遞熵 9
2.3.3. 傳遞熵計算 10
2.4. 複數模糊集 14
2.5. 最佳化演算法 14
2.5.1. 高斯型鯨群演算法 14
2.5.2. 遞迴最小平方估計法 17

第三章 研究方法 18
3.1. 多目標特徵選取 18
3.1.1. 影響資訊與傳遞熵 18
3.1.2. 多目標特徵選取演算法 18
3.2. 結構學習 21
3.2.1. 複數型減法分群法 22
3.2.2. 輸入空間最適區塊挑選 24
3.2.3. 投影式球型複數模糊集 26
3.3. 模型設計 28
3.4. GD-WOA-RLSE機器學習方法 29
第四章 實驗 32
4.1. 實驗1 32
4.2. 實驗2 38
4.2.1. 實驗2(a) 39
4.2.2. 實驗2(b) 42
4.3. 實驗3 45
第五章 實驗結果與討論 51
5.1. 全複數模型之應用:單目標與雙目標預測 51
5.2. 全複數模型之應用:問題複雜性討論 52
5.3. 驗證輸入空間最適區塊挑選的有效性 52
5.4. 驗證基於傳遞熵的特徵選取之有效性與優勢 52
5.4.1. 特徵選取有效性驗證 53
5.4.2. 傳遞熵特徵選取之優勢 53
第六章 結論與未來方向 54
參考文獻 56
參考文獻 [1] N.K. Ahmed, A.F. Atiya, N.E. Gayar, and H. El-Shishiny, “An empirical comparison of machine learning models for time series forecasting,” Econometric Reviews, vol. 29, no. 5-6, pp. 594-621, 2010.
[2] M. Akram, A. Khan, and A. Borumand Saeid, “Complex pythagorean dombi fuzzy operators using aggregation operators and their decision-making,” Expert Systems, vol. 38, no. 2, pp. e12626, 2021.
[3] R. Bellman and R. Kalaba, “On adaptive control processes,” IRE Transactions on Automatic Control, vol. 4, no. 2, pp. 1-9, 1959.
[4] T. Bossomaier, L. Barnett, M. Harré, and J.T. Lizier, "Statistical preliminaries," An Introduction to Transfer Entropy: Information Flow in Complex Systems, pp. 11-32, Cham, Switzerland: Springer, 2016.
[5] G.E. Box, G.M. Jenkins, G.C. Reinsel, and G.M. Ljung, Time Series Analysis: Forecasting and Control, Hoboken, New Jersey: John Wiley & Sons, 2015.
[6] J. Buckley, “Fuzzy complex numbers,” Fuzzy Sets and Systems, vol. 33, no. 3, pp. 333-345, 1989.
[7] L. Chen, "Curse of dimensionality," Encyclopedia of Database Systems, L. Liu and M. T. Özsu, eds., pp. 1-1, New York: Springer, 2014.
[8] S.L. Chiu, “Fuzzy model identification based on cluster estimation,” Journal of Intelligent and Fuzzy Systems, vol. 2, pp. 267-278, 1994.
[9] A. Ekbal and S. Saha, “Joint model for feature selection and parameter optimization coupled with classifier ensemble in chemical mention recognition,” Knowledge-Based Systems, vol. 85, pp. 37-51, 2015.
[10] C.W. Granger, “Investigating causal relations by econometric models and cross-spectral methods,” Econometrica: Journal of the Econometric Society, pp. 424-438, 1969.
[11] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” Journal of Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
[12] I. Guyon, S. Gunn, M. Nikravesh, and L.A. Zadeh, Feature Extraction: Foundations and Applications, Berlin, Heidelberg: Springer 2008.
[13] H. Hotelling, “Analysis of a complex of statistical variables into principal components,” Journal of Educational Psychology, vol. 24, no. 6, pp. 417, 1933.
[14] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N. Yen, C.C. Tung, and H.H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903 - 995, 1998.
[15] J.S.R. Jang, C.T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Berlin, Heidelberg: Springer, 1997.
[16] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in International Conference on Neural Networks (ICNN′95), pp. 1942-1948, Perth, WA, Australia, 1995.
[17] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Dimensionality reduction for fast similarity search in large time series databases,” Knowledge and Information Systems, vol. 3, pp. 263-286, 2001.
[18] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature selection and feature extraction techniques in machine learning,” in 2014 Science and Information Conference, pp. 372-378, London, UK, 2014.
[19] K.-j. Kim, “Financial time series forecasting using support vector machines,” Neurocomputing, vol. 55, no. 1-2, pp. 307-319, 2003.
[20] S. Kullback and R.A. Leibler, “On information and sufficiency,” The Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79-86, 1951.
[21] C. Li, “Feature selection algorithm using influence information,” National Central University, Taiwan, 2017, Unpublished draft in seminar discussion.
[22] C. Li, “Training material for graduate students,” Department of Information Management, National Central University, Taiwan, 2022, Unpublished.
[23] C. Li and Y.-C. Chen, “Machine learning approach to multi-function approximation using GA-RLSE algorithm,” Journal of e-Business, vol. 24(1), pp. 1-26, 2018.
[24] C. Li and T.-W. Chiang, “Complex neurofuzzy ARIMA forecasting—A new approach using complex fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 3, pp. 567-584, 2013.
[25] C. Li and P.-L. Wang, “A study on the gaussian distribution based whale optimization algorithm for optimization problems,” Journal of e-Business, vol. 25, no. 1, pp. P89-126, 2023.
[26] C. Li and T. Wu, “Adaptive fuzzy approach to function approximation with PSO and RLSE,” Expert Systems with Applications, vol. 38, no. 10, pp. 13266-13273, 2011.
[27] D.J. MacKay, Information Theory, Inference and Learning Algorithms, United Kingdom: Cambridge university press, 2003.
[28] E.H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1-13, 1975.
[29] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances in Engineering Software, vol. 95, pp. 51-67, 2016.
[30] L. Novelli and J.T. Lizier, “Inferring network properties from time series using transfer entropy and mutual information: Validation of multivariate versus bivariate approaches,” Network Neuroscience, vol. 5, no. 2, pp. 373-404, 2021.
[31] A.K. Parida, R. Bisoi, P.K. Dash, and S. Mishra, “Financial time series prediction using a hybrid functional link fuzzy neural network trained by adaptive unscented kalman filter,” in 2015 IEEE Power, Communication and Information Technology Conference (PCITC), 2015.
[32] D. Ramot, R. Milo, M. Friedman, and A. Kandel, “Complex fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 171-186, 2002.
[33] T. Schreiber, “Measuring information transfer,” Physical Review Letters, vol. 85, no. 2, pp. 461, 2000.
[34] C.E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, no. 3, pp. 379-423, 1948.
[35] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics, no. 1, pp. 116-132, 1985.
[36] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267-288, 1996.
[37] M.-C. Tsai, C.-H. Cheng, M.-I. Tsai, and H.-Y. Shiu, “Forecasting leading industry stock prices based on a hybrid time-series forecast model,” PLOS ONE, vol. 13, no. 12, pp. e0209922, 2018.
[38] Y. Tsukamoto, “An approach to fuzzy reasoning method,” Advances in Fuzzy Set Theory and Applications, 1979.
[39] C.-H. Tu and C. Li, “Multitarget prediction—A new approach using sphere complex fuzzy sets,” Engineering Applications of Artificial Intelligence, vol. 79, pp. 45-57, 2019.
[40] L.A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338-353, 1965.
[41] Y. Zhai, Y.-S. Ong, and I.W. Tsang, “The emerging "Big Dimensionality",” IEEE Computational Intelligence Magazine, vol. 9, no. 3, pp. 14-26, 2014.
[42] L. Zhuo, J. Zheng, X. Li, F. Wang, B. Ai, and J. Qian, “A genetic algorithm based wrapper feature selection method for classification of hyperspectral images using support vector machine,” in Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images, pp. 503-511, 2008.
指導教授 李俊賢(Chunshien Li) 審核日期 2023-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明