博碩士論文 110453032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.118.186.156
姓名 陶玟杏(TAO WEN HSING)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 應用案例式推理於FAQ系統之研究-以程式除錯問題診斷系統為例
(A Case Study of Applying Case-Based Reasoning Approach to FAQ Information System -A Case Study of Programming Debug Problem Diagnosis System)
相關論文
★ 專案管理的溝通關鍵路徑探討─以某企業軟體專案為例★ 運用並探討會議流如何促進敏捷發展過程中團隊溝通與文件化:以T銀行系統開發為例
★ 專案化資訊服務中人力連續派遣決策模式之研究─以高鐵行控資訊設備維護為例★ 以組織正義觀點介入案件指派決策之研究
★ 應用協調理論建立系統軟體測試中問題改善之協作流程★ 應用案例式推理於問題管理系統之研究 -以筆記型電腦產品為例
★ 運用限制理論於多專案開發模式的人力資源配置之探討★ 應用會議流方法於軟體專案開發之個案研究:以翰昇科技公司為例
★ 多重專案、多期再規劃的軟體開發接案決策模式:以南亞科技資訊部門為例★ 會議導向敏捷軟體開發及系統設計:以大學畢業專題為例
★ 一種基於物件、屬性導向之變更影響分析方法於差異化產品設計★ 會議流方法對大學畢業專題的團隊合作品質影響之實驗研究
★ 實施敏捷式發展法於大學部畢業專題之 行動研究 – 以中央大學資管系為例★ 建立一個用來評核自然語言需求品質的線上資訊系統
★ 結合本體論與模糊分析網路程序法於軟體測試之風險與風險關聯辨識★ 在軟體反向工程中針對UML結構模型圖之線上品質評核系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 隨著知識經濟的來臨,全球因應環境變異持續面臨考驗,如新冠肺炎疫情造成市場巨變,導致需求變化快速連帶影響專案進度,在有限的時間內,程式開發除了兼顧時程外,也須落實程式品質管理,知識重用仰賴技術人員的經驗,程式開發過程導入常見問題集可使專案更有效率完成。本研究開發FAQ系統,針對軟體程式除錯進行問題診斷,透過程式除錯案例來說明及展示系統的操作,系統應用案例式推理 (Case-based reasoning , CBR),蒐集程式除錯問題答案以進行知識重用,結合問答集模型進行資料檢索過往相似問題,根據檢索結果得到最佳解決方案協助程式開發。
摘要(英) In the context of the knowledge-based economy, the world is confronted with a range of challenges in effectively addressing environmental changes. One prominent example of such challenges is the COVID-19 pandemic, which has brought about significant disruptions in the market, leading to rapid shifts in demand and subsequently impacting project progress. Within limited timeframes, software development processes need to account for both scheduling considerations and actual implementation. Effective quality management and knowledge reuse heavily rely on the expertise of technicians. Introducing a Frequently Asked Questions (FAQ) system in the software development process can enhance project efficiency.
This study aims to develop an FAQ system specifically designed for diagnosing problems in software program debugging. The system not only explains and demonstrates the operation of the debugging process through relevant cases but also leverages Case-Based Reasoning (CBR) techniques to collect answers to common program debugging questions for further analysis. By employing knowledge reuse and utilizing a question-and-answer set model, the system enables efficient retrieval of data related to similar past problems. This retrieval process allows for obtaining the best solutions to assist in program development.
關鍵字(中) ★ 案例式推理
★ 常見問題集
★ TFIDF
★ 個案研究
★ 軟體品質
關鍵字(英) ★ Case-based reasoning
★ FAQ
★ TFIDF
★ Case study research
★ Software quality
論文目次 目錄
一、 緒論 1
1.1 研究背景 1
1.2 研究動機與問題 1
1.3 研究目的 2
1.4 研究範圍 3
1.5 研究架構 3
二、 文獻探討 4
2.1. 常用問答資訊系統 4
2.2. 案例式推理與相關應用 5
2.3. 案例檢索相關應用 7
2.4. 文本相似度方法 10
三、 系統設計 14
3.1. 系統架構 14
3.2. 系統設計 15
3.3. 檢索案例相似計算方法比較 18
3.4. 案例相似計算方法 22
四、 系統實作 26
4.1. 系統開發工具 26
4.2. 系統展示 27
五、 系統成果 31
5.1. 系統成效 31
六、 訪談與分析 37
6.1. 訪談內容 37
6.2. 效度分析 41
七、 結論 43
7.1. 研究貢獻 43
7.2. 研究限制與未來發展 44
參考文獻 45
參考文獻 1. Yu, Y.-T. (2022). 應用案例式推理於問題管理系統之研究-以筆記型電腦產品為例. National Central University.
2. Abdul Majid, M., & Romli, A. (2019). Case based reasoning for green information systems infusion and assimilation among IT professionals in university campuses. Scientia Iranica, 26(Special Issue on: Socio-Cognitive Engineering), 127–135.
3. Aboutaleb, A., Fayed, A., Ismail, D., GabAllah, N. A., Rafea, A., & Sakr, N. (2021). BERT BiLSTM-Attention Similarity Model. 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 366–371.
4. Acid, S., De Campos, L. M., Fernández‐Luna, J. M., & Huete, J. F. (2003). An information retrieval model based on simple Bayesian networks. International Journal of Intelligent Systems, 18(2), 251–265.
5. Ahn, J., Ji, S.-H., Ahn, S. J., Park, M., Lee, H.-S., Kwon, N., Lee, E.-B., & Kim, Y. (2020). Performance evaluation of normalization-based CBR models for improving construction cost estimation. Automation in Construction, 119, 103329.
6. Amin, K., Lancaster, G., Kapetanakis, S., Althoff, K.-D., Dengel, A., & Petridis, M. (2020). Advanced similarity measures using word embeddings and siamese networks in CBR. Intelligent Systems and Applications: Proceedings of the 2019 Intelligent Systems Conference (IntelliSys) Volume 2, 449–462.
7. Andreasen, T., Christiansen, H., & Larsen, H. L. (1998). Flexible Query Answering Systems: Third International Conference, FQAS’98, Roskilde, Denmark, May 13-15, 1998, Proceedings (Issue 1495). Springer Science & Business Media.
8. Anthony Jr, B. (2023). Employing case-based reasoning to provide knowledge for sustainable regional development. In Knowledge Management for Regional Policymaking (pp. 45–59). Springer.
9. Ayed, S. B., Elouedi, Z., & Lefevre, E. (2017). ECTD: evidential clustering and case types detection for case base maintenance. 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 1462–1469.
10. Besbes, G., & Baazaoui-Zghal, H. (2015). Modular ontologies and CBR-based hybrid system for web information retrieval. Multimedia Tools and Applications, 74, 8053–8077.
11. Biswas, S. K., Sinha, N., & Purkayastha, B. (2014). A review on fundamentals of case-based reasoning and its recent application in different domains. International Journal of Advanced Intelligence Paradigms, 6(3), 235–254.
12. Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146.
13. Briand, L. C., Morasca, S., & Basili, V. R. (1996a). Property-based software engineering measurement. IEEE Transactions on Software Engineering, 22(1), 68–86. https://doi.org/10.1109/32.481535
14. Briand, L. C., Morasca, S., & Basili, V. R. (1996b). Property-based software engineering measurement. IEEE Transactions on Software Engineering, 22(1), 68–86.
15. Burke, R. D., Hammond, K. J., Kulyukin, V., Lytinen, S. L., Tomuro, N., & Schoenberg, S. (1997). Question answering from frequently asked question files: Experiences with the faq finder system. AI Magazine, 18(2), 57–57.
16. Carswell, J. D., Wilson, D. C., & Bertolotto, M. (2002). Digital image similarity for geo-spatial knowledge management. Advances in Case-Based Reasoning: 6th European Conference, ECCBR 2002 Aberdeen, Scotland, UK, September 4–7, 2002 Proceedings 6, 58–72.
17. Ceballos, R., Abreu, R., Varela-Vaca, Á. J., & Gasca, R. M. (2019). Model-based software debugging. Fault Diagnosis of Dynamic Systems: Quantitative and Qualitative Approaches, 365–387.
18. Chebli, A., Djebbar, A., & Merouani, H. F. (2022). Case Base Maintenance: Clustering Informative, Representative and Divers Cases (C IRD). Proceedings of International Conference on Information Technology and Applications: ICITA 2021, 387–396.
19. Chergui, O., Begdouri, A., & Groux-Leclet, D. (2019). Integrating a Bayesian semantic similarity approach into CBR for knowledge reuse in Community Question Answering. Knowledge-Based Systems, 185, 104919.
20. Chow, H. K., Choy, K. L., Lee, W. B., Chan, F. T., & Lam, T. C. (2005). Design of a case‐based logistics strategy system–an integrated approach. Expert Systems, 22(4), 173–192.
21. Costa, C. A., Luciano, M. A., Lima, C. P., & Young, R. I. (2012). Assessment of a product range model concept to support design reuse using rule based systems and case based reasoning. Advanced Engineering Informatics, 26(2), 292–305.
22. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv Preprint ArXiv:1810.04805.
23. Do, P.-K., Nguyen, H.-T., Tran, C.-X., Nguyen, M.-T., & Nguyen, M.-L. (2017). Legal question answering using ranking SVM and deep convolutional neural network. ArXiv Preprint ArXiv:1703.05320.
24. Feng, Y., Naeem, M. A., Mirza, F., & Tahir, A. (2020). Reply using past replies—A deep learning-based e-mail client. Electronics, 9(9), 1353.
25. Gomaa, W. H., & Fahmy, A. A. (2013). A survey of text similarity approaches. International Journal of Computer Applications, 68(13), 13–18.
26. Gu, M., Xu, A., Yuan, F., He, X., & Cui, Z. (2021). An improved CBR model using time-series data for predicting the end-point of a converter. ISIJ International, 61(10), 2564–2570.
27. He, A., Gaeddert, J., Bae, K. K., Newman, T. R., Reed, J. H., Morales, L., & Park, C.-H. (2009). Development of a case-based reasoning cognitive engine for ieee 802.22 wran applications. ACM SIGMOBILE Mobile Computing and Communications Review, 13(2), 37–48.
28. Hindle, A., Alipour, A., & Stroulia, E. (2016). A contextual approach towards more accurate duplicate bug report detection and ranking. Empirical Software Engineering, 21, 368–410.
29. Hong, Y., Xie, H., Bhumbra, G., & Brilakis, I. (2021). Comparing natural language processing methods to cluster construction schedules. Journal of Construction Engineering and Management, 147(10), 04021136.
30. Hove, S. E., & Anda, B. (2005). Experiences from conducting semi-structured interviews in empirical software engineering research. 11th IEEE International Software Metrics Symposium (METRICS’05), 10 pp. – 23. https://doi.org/10.1109/METRICS.2005.24
31. Hu, W.-C., Yu, D.-F., & Jiau, H. C. (2010). A faq finding process in open source project forums. 2010 Fifth International Conference on Software Engineering Advances, 259–264.
32. Huang, Z., Fan, H., & Shen, L. (2019). Case-based reasoning for selection of the best practices in low-carbon city development. Frontiers of Engineering Management, 6(3), 416–432.
33. Huo, Y., Liu, J., Xiong, J., Xiao, W., & Zhao, J. (2022). Machine learning and CBR integrated mechanical product design approach. Advanced Engineering Informatics, 52, 101611.
34. Khilji, M. D. (2023). Features matching using natural language processing. ArXiv Preprint ArXiv:2303.12804.
35. Kolodner, J. L. (1992). An introduction to case-based reasoning. Artificial Intelligence Review, 6(1), 3–34.
36. Lai, S., Liu, K., He, S., & Zhao, J. (2016). How to generate a good word embedding. IEEE Intelligent Systems, 31(6), 5–14.
37. Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents. International Conference on Machine Learning, 1188–1196.
38. Lenz, M., Hübner, A., & Kunze, M. (1998). Textual cbr. Case-Based Reasoning Technology: From Foundations to Applications, 115–137.
39. Leśniak, A., & Zima, K. (2018). Cost calculation of construction projects including sustainability factors using the Case Based Reasoning (CBR) method. Sustainability, 10(5), 1608.
40. Marjai, P., Lehotay-Kéry, P., & Kiss, A. (2021). Document similarity for error prediction. Journal of Information and Telecommunication, 5(4), 407–420.
41. Mata, A., Baruque, B., Pérez-Lancho, B., Corchado, E., & Corchado, J. M. (2010). Forest fire evolution prediction using a hybrid intelligent system. Balanced Automation Systems for Future Manufacturing Networks: 9th IFIP WG 5.5 International Conference, BASYS 2010, Valencia, Spain, July 21-23, 2010. Proceedings, 64–71.
42. Mayer, W., & Wotawa, F. (2021). Artificial intelligence methods for software debugging. In Artificial Intelligence Methods For Software Engineering (pp. 401–435).
43. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. ArXiv Preprint ArXiv:1301.3781.
44. Miranda, M., Sánchez-Ruiz, A. A., & Peinado, F. (2021). Interactive Explainable Case-Based Reasoning for Behavior Modelling in Videogames. 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), 1263–1270.
45. Moreo, A., Romero, M., Castro, J. L., & Zurita, J. M. (2012). FAQtory: A framework to provide high-quality FAQ retrieval systems. Expert Systems with Applications, 39(14), 11525–11534.
46. Palilingan, T., & Tomatala, M. F. (2022). Case-Based Reasoning for Dengue Hemorrhagic Fever Diagnosis Using Manhattan Distance. 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 256–261.
47. Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543.
48. Plansangket, S., & Gan, J. Q. (2015). A query suggestion method combining TF-IDF and Jaccard Coefficient for interactive web search. Artificial Intelligence Research, 4(2).
49. Poels, G., & Dedene, G. (2000). Distance-based software measurement: Necessary and sufficient properties for software measures. Information and Software Technology, 42(1), 35–46. https://doi.org/10.1016/S0950-5849(99)00053-1
50. Pusztová, Ľ., Babič, F., Paralič, J., & Paraličová, Z. (2019). How to Improve the Adaptation Phase of the CBR in the Medical Domain. Machine Learning and Knowledge Extraction: Third IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2019, Canterbury, UK, August 26–29, 2019, Proceedings 3, 168–177.
51. Reuss, P., Witzke, C., & Althoff, K.-D. (2017). Dependency modeling for knowledge maintenance in distributed CBR systems. Case-Based Reasoning Research and Development: 25th International Conference, ICCBR 2017, Trondheim, Norway, June 26-28, 2017, Proceedings 25, 302–314.
52. Richter, M. M., Weber, R. O., Richter, M. M., & Weber, R. O. (2013). Conversational CBR. Case-Based Reasoning: A Textbook, 465–485.
53. Rieck, K., & Laskov, P. (2008). Linear-Time Computation of Similarity Measures for Sequential Data. Journal of Machine Learning Research, 9(1).
54. Romero, M., Moreo, A., & Castro, J. L. (2013). A cloud of FAQ: A highly-precise FAQ retrieval system for the Web 2.0. Knowledge-Based Systems, 49, 81–96.
55. Silva, H., António, N., & Bacao, F. (2022). A Rapid Semi-automated Literature Review on Legal Precedents Retrieval. Progress in Artificial Intelligence: 21st EPIA Conference on Artificial Intelligence, EPIA 2022, Lisbon, Portugal, August 31–September 2, 2022, Proceedings, 53–65.
56. Smiti, A., & Elouedi, Z. (2018). SCBM: soft case base maintenance method based on competence model. Journal of Computational Science, 25, 221–227.
57. Sujo, J. C. M. (2023). BRAIN L: A book recommender system. ArXiv Preprint ArXiv:2302.00653.
58. Sun, C., Lo, D., Khoo, S.-C., & Jiang, J. (2011). Towards more accurate retrieval of duplicate bug reports. 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), 253–262.
59. Tehrani, A. R. F., & Mohamed, F. Z. M. (2011). A CBR-based Approach to ITIL-based Service Desk. Journal of Emerging Trends in Computing and Information Sciences, 2(10), 476–484.
60. Terra, E., Mohammed, A., & Hefny, H. A. (2020). Glosophia: An enhanced textual based clustering approach by word embeddings. Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019, 700–710.
61. Tung, Y.-H., Tseng, S.-S., Weng, J.-F., Lee, T.-P., Liao, A. Y. H., & Tsai, W.-N. (2010). A rule-based CBR approach for expert finding and problem diagnosis. Expert Systems with Applications, 37(3), 2427–2438. https://doi.org/10.1016/j.eswa.2009.07.037
62. Wang, H.-J., Chiou, C.-W., & Juan, Y.-K. (2008). Decision support model based on case-based reasoning approach for estimating the restoration budget of historical buildings. Expert Systems with Applications, 35(4), 1601–1610.
63. Wei, W., & Liang, Y. (2022). A Siamese network framework for bank intelligent Q&A prediction. Journal of Forecasting, 41(8), 1570–1577.
64. Winiwarter, W. (2000). Adaptive natural language interfaces to FAQ knowledge bases. Data & Knowledge Engineering, 35(2), 181–199.
65. Yang, L., Jin, R., & Sukthankar, R. (2012). Bayesian active distance metric learning. ArXiv Preprint ArXiv:1206.5283.
66. Yang, S.-Y., Liao, P.-C., & Ho, C.-S. (2005). An Ontology-Supported Case-Based Reasoning Technique for FAQ Proxy Service. SEKE, 639–644.
67. Yogarajan, V., Gouk, H., Smith, T., Mayo, M., & Pfahringer, B. (2020). Comparing high dimensional word embeddings trained on medical text to bag-of-words for predicting medical codes. Intelligent Information and Database Systems: 12th Asian Conference, ACIIDS 2020, Phuket, Thailand, March 23–26, 2020, Proceedings, Part I 12, 97–108.
68. Yu, L., & Li, M. (2023). A case-based reasoning driven ensemble learning paradigm for financial distress prediction with missing data. Applied Soft Computing, 110163.
69. Zhang, L. (2021). Research on case reasoning method based on TF-IDF. International Journal of System Assurance Engineering and Management, 12, 608–615.
70. Zhang, Y., Chen, Q., Yang, Z., Lin, H., & Lu, Z. (2019). BioWordVec, improving biomedical word embeddings with subword information and MeSH. Scientific Data, 6(1), 52.
指導教授 陳仲儼(Chen, Chung-Yang) 審核日期 2023-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明