摘要(英) |
Investors today utilize various tools and strategies for investment, among which quantitative trading has emerged as one of the trends in recent years. Many studies have developed diverse multi-factor models based on validated theories that identify effective factors influencing returns. Subsequently, scholars have started to experiment with incorporating factor selection strategies to examine their impact on performance.
The Chinese stock market is a developing market, with retail investors comprising the majority. The short-term speculative behavior of retail investors leads to high stock price volatility and increased investment risk. However, China′s large population, enormous market potential, rapid economic growth, and geographical proximity to Taiwan foster significant trade and investment activities. Therefore, this study aims to utilize quantitative trading to identify investment opportunities in the Chinese stock market.
In this regard, this study builds upon the model developed by Wang et al. (2022) and incorporates the necessary components for backtesting in the Chinese stock market. These additions are integrated into the same system, allowing for factor selection and backtesting across different stock markets. Furthermore, we implement a strategy that incorporates trailing stops in a trend-following Bollinger Bands strategy. This study aims to experiment with the combination of factor selection and different trading strategies to assess their performance. |
參考文獻 |
Bollinger, J. (2001). Bollinger on Bollinger Bands. McGraw-Hill Education.
Carhart, M. M. (1997). On persistence in mutual fund performance. The journal of finance, 52(1), 57-82.
Davey, K. J. (2014). Building winning algorithmic trading systems: A trader′s journey from data mining to Monte Carlo simulation to live trading. John Wiley & Sons.
Dunn, O. J. (1961). Multiple comparisons among means. Journal of the American statistical Association, 56(293), 52-64.
Faith, C. M., & Foster, M. (2007). Way of the Turtle. McGraw-Hill New York.
Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56.
Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of financial economics, 116(1), 1-22.
Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American statistical Association, 47(260), 583-621.
MultiCharts. https://www.multicharts.com.tw/
Pardo, R. (2011). The Evaluation And Optimization of Trading Strategies. John Wiley & Sons.
Ross, S. (1976). The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory, 13(3), 341-360.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591-611.
Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The journal of finance, 19(3), 425-442.
Soros, G. (1995). Soros on Soros: staying ahead of the curve. John Wiley & Sons.
Spearman, C. (1961). The proof and measurement of association between two things.
Tortoriello, R. (2009). Quantitative strategies for achieving alpha. McGraw Hill.
XQ全球贏家. https://www.xq.com.tw/
Yahoo Finance. https://finance.yahoo.com/
丁鹏. (2012). 量化投資一策略與技術. 北京:电子_丁业出版社.
中国证券监督管理委员会. (2021). 上市公司信息披露管理办法. http://www.csrc.gov.cn/csrc/c106256/c1653948/1653948/files/317acd342b4a437596920f576209385f.pdf
王严勤. (2014). 影响中国股市回暖的因素分析. 商(22), 181-181.
王崇驊. (2022). 結合因子選股與系統交易的股票操作系統之分析設計與實作 – 以美股市場為例 國立中央大學. 桃園市.
台灣經濟新報. https://www.tej.com.tw/
张金鑫. (2021). 中国股市投资者的博弈分析. 产业与科技论坛.
卓育辰. (2021). 結合因子分析與程式交易應用於台股之自動化回測與驗證平台 國立中央大學. 桃園市.
陈倩倩, & 周扬. (2019). 中国股市的博弈——“羊群效应”. 时代金融, 8.
崔玉婕. (2015). 中国股市发展现状及问题研究. 黑龙江八一农垦大学学报, 27(4), 131-133.
張維真. (2019). 運用等分法與核心交易策略建構投資組合之自動化交易分析平台—以美股為範例 國立中央大學. 桃園市.
彭康哲. (2016). 結合程式交易與選股模型的分析平台之設計與實作 – 以美國股票市場為例 國立中央大學. 桃園市.
謝昀峻. (2018). 運用等分法與核心交易策略於台灣股票之自動化平台設計與實證研究 國立中央大學. 桃園市. |