博碩士論文 110453049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.191.198.245
姓名 王宏宇(Jacky Wang)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 機器學習與特徵工程用於虛擬貨幣異常交易監控之成效討論
相關論文
★ 多重標籤文本分類之實證研究 : word embedding 與傳統技術之比較★ 基於圖神經網路之網路協定關聯分析
★ 學習模態間及模態內之共用表示式★ Hierarchical Classification and Regression with Feature Selection
★ 病徵應用於病患自撰日誌之情緒分析★ 基於注意力機制的開放式對話系統
★ 針對特定領域任務—基於常識的BERT模型之應用★ 基於社群媒體使用者之硬體設備差異分析文本情緒強烈程度
★ 捷運轉轍器應用長短期記憶網路與機器學習實現最佳維保時間提醒★ 基於半監督式學習的網路流量分類
★ ERP日誌分析-以A公司為例★ 企業資訊安全防護:網路封包蒐集分析與網路行為之探索性研究
★ 資料探勘技術在顧客關係管理之應用─以C銀行數位存款為例★ 人臉圖片生成與增益之可用性與效率探討分析
★ 人工合成文本之資料增益於不平衡文字分類問題★ 探討使用多面向方法在文字不平衡資料集之分類問題影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 基於比特幣的匿名性與去中心化特點,许多政府和監管機構一直對其持谨慎態度。未来,監管可能會更加嚴格。台灣金管會也計畫於2023年5月訂定台灣虛擬貨幣管理辦法。

對照傳統貨幣,金融機構必須符合國際法規,以確保不向罪犯和恐怖分子提供服務。他們還需要持續監控金融交易以發現可疑行為活動。這些金融機構有許多用來監控和驗證客戶的信息的作業程序,以確認客戶的真實身份。未能檢測到異常交易將導致金融機構造成的嚴重的後果,視情況嚴重程度而定,給予相關機構警告或罰鍰。因此,大部分金融機構使用反洗錢(Anti-money laundering,AML)解決方案進行制裁及觀察名單過濾和篩選,以監控金融網絡內的每筆交易,以確保沒有任何交易可以用於與被禁止的人做生意。近期,金融界和學術界一致認為機器學習可能對交易監控產生重大影響。

因此,本研究採用Kaggle上的比特幣異常交易資料集,進一步探討在比特幣匿名交易的特性下,各種機器學習演算法,包含隨機森林(Random Forest)、邏輯回歸(Logistic Regression)、增強型梯度提升(XGBoost)、梯度提升(Gradient Boosting)與支持向量機(Support Vector Machine)等,對異常交易監控的效率,同時,也因為該資料集的特徵皆做過前置處理,所有特徵名稱皆匿名,故希望透過資料導向方法,以特徵選取方式挑選出對異常交易偵測有較顯著影響的特徵集合。

本研究實驗結果顯示機器學習演算法中,以增強型梯度提升演算法所建立之模型的效率為最佳,隨機森林演算法次之。特徵選取實驗中以交易本身特徵值及交易鄰居節點特徵值等兩個特徵集合對模型效率之影響最為顯著。
摘要(英) Due to the anonymity and decentralization of Bitcoin, many governments and regulatory agencies have been cautious about it. In the future, regulation may become stricter. The Financial Supervisory Commission of Taiwan also plans to establish a virtual currency regulatory authority in Taiwan in May 2023.

Compared with traditional currencies, financial institutions must comply with international regulations to ensure that they do not provide services to criminals and terrorists. They also need to continuously monitor financial transactions to detect suspicious activities. These financial institutions have many operational procedures to monitor and verify customer information to confirm the real identity of customers. Failure to detect illegal transactions will lead to serious consequences for financial institutions, warnings or fines will be given to relevant institutions depending on the severity of the situation. Therefore, most financial institutions use Anti-Money Laundering(AML)solutions for sanctions and watchlist filtering and screening to monitor every transaction within the financial network to ensure that no transaction can be used to do business with prohibited persons. Recently, the financial community and academia unanimously believe that machine learning may have a significant impact on monitoring.

Therefore, this study uses the Bitcoin abnormal transaction dataset on Kaggle to further explore various machine learning algorithms under the characteristics of Bitcoin anonymous transactions, including Random Forest, Logistic Regression, XGBoost, Gradient Boosting, and Support Vector Machine, etc., for the efficiency of abnormal transaction monitoring. At the same time, because the features of this dataset have been pre-processed, all feature names are anonymous, so it is hoped to select a feature set that has a more significant impact on abnormal transaction detection through data-driven methods.

The experimental results of this research show that the efficiency of the model established by the XGBoost algorithm is the best, followed by the Random Forest algorithm. In the feature selection experiment, the transaction features and aggregation features have the most significant impact on the efficiency of the model.
關鍵字(中) ★ 機器學習
★ 虛擬貨幣
★ 比特幣
★ 異常交易監控
關鍵字(英) ★ Machine learning
★ Virtual currency
★ Bitcoin
★ Abnormal transaction monitoring
論文目次 中文摘要 iv
Abstract v
誌謝 vi
目錄 vii
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 論文架構 2
第二章 文獻探討 4
2.1 異常交易監控解決方案 4
2.2 機器學習方法 5
2.3 研究相關方法 6
2.4 相關研究探討:機器學習應用於異常交易監控 11
第三章 研究方法 16
3.1 研究方法概述 16
3.2 資料集介紹 16
3.3 方法及流程 18
3.4 特徵工程介紹 20
3.5 評估指標介紹 21
第四章 結果與分析 24
4.1 模型效率比較分析 24
4.2 特徵集合比較分析 26
第五章 總結 37
5.1 結論 37
5.2 實驗貢獻 37
5.3 研究限制 37
5.4 未來研究方向 37
參考文獻 [1] 動區, "台灣金管會「管定加密貨幣了」!黃天牧:我將是主要監管角色," ed, 2023, pp. https://www.blocktempo.com/taiwan-financial-supervisory-commission-crypto-currencies-authority/.
[2] Elliptic, "Kaggle Elliptic Data Set - Bitcoin Transaction Graph," ed, 2019, pp. https://www.kaggle.com/datasets/ellipticco/elliptic-data-set.
[3] Elliptic, "Kaggle Elliptic-emb-50d," ed, 2019, p. https://www.kaggle.com/datasets/dhruvrnaik/ellipticemb50d.
[4] 中本聰, "比特幣:對等網路電子現金系統," ed, 2008, p. https://web.archive.org/web/20140320135003/https://bitcoin.org/bitcoin.pdf.
[5] 中央通訊社, "中非共和國通過 以比特幣為法定貨幣," ed, 2022, p. https://www.cna.com.tw/news/aopl/202204270406.aspx.
[6] 財經M平台, "加密貨幣市值," ed, 2023, pp. https://www.macromicro.me/charts/33112/cryptocurrency-total-market-cap.
[7] A. Ng and M. Jordan, "On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes," Advances in neural information processing systems, vol. 14, 2001.
[8] L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001.
[9] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," in Proceedings of the fifth annual workshop on Computational learning theory, 1992, pp. 144-152.
[10] J. H. Friedman, "Greedy function approximation: a gradient boosting machine," Annals of statistics, pp. 1189-1232, 2001.
[11] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794.
[12] M. Alkhalili, M. H. Qutqut, and F. Almasalha, "Investigation of applying machine learning for watch-list filtering in anti-money laundering," IEEE Access, vol. 9, pp. 18481-18496, 2021.
[13] M. Weber et al., "Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for financial forensics," arXiv preprint arXiv:1908.02591, 2019.
[14] Y. Zeng, "Applications of Machine Learning in Bitcoin Anti-·Money Laundering," 2020.
[15] J. Lorenz, M. I. Silva, D. Aparício, J. T. Ascensão, and P. Bizarro, "Machine learning methods to detect money laundering in the bitcoin blockchain in the presence of label scarcity," in Proceedings of the First ACM International Conference on AI in Finance, 2020, pp. 1-8.
[16] Y. Boutellier, "Node embeddings for Beginners," ed, 2021, pp. https://towardsdatascience.com/node-embeddings-for-beginners-554ab1625d98.
指導教授 柯士文(Ke, Shi-Wen) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明