參考文獻 |
[1] D.-T. Le, H. W. Lauw, and Y. Fang, “Correlation-Sensitive Next-Basket Recommendation,” presented at the the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macau, China, Aug. 2019. Accessed: Jun. 08, 2023. [Online]. Available: https://www.ijcai.org/proceedings/2019/389
[2] Z. Zhao, Q. Yang, H. Lu, T. Weninger, D. Cai, X. He, and Y. Zhuang, “Social-aware movie recommendation via multimodal network learning,” IEEE Trans. Multimed., vol. 20, no. 2, pp. 430–440, 2017.
[3] Z. Nazari, C. Charbuillet, J. Pages, M. Laurent, D. Charrier, B. Vecchione, and B. Carterette, “Recommending podcasts for cold-start users based on music listening and taste,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 1041–1050.
[4] C. Wu, F. Wu, M. An, J. Huang, Y. Huang, and X. Xie, “NPA: neural news recommendation with personalized attention,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 2576–2584.
[5] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges,” ACM Comput. Surv. CSUR, vol. 47, no. 1, pp. 1–45, 2014.
[6] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized markov chains for next-basket recommendation,” in Proceedings of the 19th international conference on World wide web, 2010, pp. 811–820.
[7] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.
[8] Z. Li, H. Zhao, Q. Liu, Z. Huang, T. Mei, and E. Chen, “Learning from history and present: Next-item recommendation via discriminatively exploiting user behaviors,” in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 1734–1743.
[9] H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong, and J. Wu, “Sequential recommender system based on hierarchical attention network,” in IJCAI International Joint Conference on Artificial Intelligence, 2018.
[10] L. Yu, C. Zhang, S. Liang, and X. Zhang, “Multi-Order Attentive Ranking Model for Sequential Recommendation,” Proc. AAAI Conf. Artif. Intell., vol. 33, no. 01, Art. no. 01, Jul. 2019, doi: 10.1609/aaai.v33i01.33015709.
[11] D. Wang, D. Xu, D. Yu, and G. Xu, “Time-aware sequence model for next-item recommendation,” Appl. Intell., vol. 51, no. 2, pp. 906–920, Feb. 2021, doi: 10.1007/s10489-020-01820-2.
[12] H. Jing and A. J. Smola, “Neural Survival Recommender,” in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, in WSDM ’17. New York, NY, USA: Association for Computing Machinery, Feb. 2017, pp. 515–524. doi: 10.1145/3018661.3018719.
[13] C. Ma, L. Ma, Y. Zhang, J. Sun, X. Liu, and M. Coates, “Memory Augmented Graph Neural Networks for Sequential Recommendation,” Proc. AAAI Conf. Artif. Intell., vol. 34, no. 04, Art. no. 04, Apr. 2020, doi: 10.1609/aaai.v34i04.5945.
[14] S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M. A. Orgun, L. Cao, F. Ricci, and P. S. Yu, “Graph Learning based Recommender Systems: A Review.” arXiv, May 13, 2021. doi: 10.48550/arXiv.2105.06339.
[15] L. Liu, L. Wang, and T. Lian, “CaSe4SR: Using category sequence graph to augment session-based recommendation,” Knowl.-Based Syst., vol. 212, p. 106558, Jan. 2021, doi: 10.1016/j.knosys.2020.106558.
[16] L. Wu, X. He, X. Wang, K. Zhang, and M. Wang, “A Survey on Accuracy-Oriented Neural Recommendation: From Collaborative Filtering to Information-Rich Recommendation,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 5, pp. 4425–4445, May 2023, doi: 10.1109/TKDE.2022.3145690.
[17] G.-E. Yap, X.-L. Li, and P. S. Yu, “Effective Next-Items Recommendation via Personalized Sequential Pattern Mining,” in Database Systems for Advanced Applications, S. Lee, Z. Peng, X. Zhou, Y.-S. Moon, R. Unland, and J. Yoo, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 48–64. doi: 10.1007/978-3-642-29035-0_4.
[18] U. Niranjan, R. B. V. Subramanyam, and V. Khanaa, “Developing a Web Recommendation System Based on Closed Sequential Patterns,” in Information and Communication Technologies, V. V. Das and R. Vijaykumar, Eds., in Communications in Computer and Information Science. Berlin, Heidelberg: Springer, 2010, pp. 171–179. doi: 10.1007/978-3-642-15766-0_25.
[19] M. Karimi, B. Cule, and B. Goethals, “On-the-Fly News Recommendation Using Sequential Patterns,” 2019.
[20] M. Eirinaki, M. Vazirgiannis, and D. Kapogiannis, “Web path recommendations based on page ranking and Markov models,” in Proceedings of the 7th annual ACM international workshop on Web information and data management, in WIDM ’05. New York, NY, USA: Association for Computing Machinery, Nov. 2005, pp. 2–9. doi: 10.1145/1097047.1097050.
[21] X. Wu, Q. Liu, E. Chen, L. He, J. Lv, C. Cao, and G. Hu, “Personalized next-song recommendation in online karaokes,” in Proceedings of the 7th ACM conference on Recommender systems, in RecSys ’13. New York, NY, USA: Association for Computing Machinery, Oct. 2013, pp. 137–140. doi: 10.1145/2507157.2507215.
[22] A. A. Ahmed and N. Salim, “Markov Chain Recommendation System (MCRS),” vol. 3, no. 1, 2016.
[23] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, “Recurrent Recommender Networks,” in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, in WSDM ’17. New York, NY, USA: Association for Computing Machinery, Feb. 2017, pp. 495–503. doi: 10.1145/3018661.3018689.
[24] T. Donkers, B. Loepp, and J. Ziegler, “Sequential User-based Recurrent Neural Network Recommendations,” in Proceedings of the Eleventh ACM Conference on Recommender Systems, in RecSys ’17. New York, NY, USA: Association for Computing Machinery, Aug. 2017, pp. 152–160. doi: 10.1145/3109859.3109877.
[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2017. Accessed: Jun. 08, 2023. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
[26] W.-C. Kang and J. McAuley, “Self-Attentive Sequential Recommendation,” in 2018 IEEE International Conference on Data Mining (ICDM), Jan. 2018, pp. 197–206. doi: 10.1109/ICDM.2018.00035.
[27] S. Zhang, Y. Tay, L. Yao, and A. Sun, “Next Item Recommendation with Self-Attention.” arXiv, Aug. 25, 2018. doi: 10.48550/arXiv.1808.06414.
[28] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-Based Recommendation with Graph Neural Networks,” Proc. AAAI Conf. Artif. Intell., vol. 33, no. 01, Art. no. 01, Jul. 2019, doi: 10.1609/aaai.v33i01.3301346.
[29] C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang, J. Fang, and X. Zhou, “Graph Contextualized Self-Attention Network for Session-based Recommendation,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China: International Joint Conferences on Artificial Intelligence Organization, Aug. 2019, pp. 3940–3946. doi: 10.24963/ijcai.2019/547.
[30] J. Li, Y. Wang, and J. McAuley, “Time Interval Aware Self-Attention for Sequential Recommendation,” in Proceedings of the 13th International Conference on Web Search and Data Mining, in WSDM ’20. New York, NY, USA: Association for Computing Machinery, Jan. 2020, pp. 322–330. doi: 10.1145/3336191.3371786.
[31] X. Li, C. Wang, B. Tong, J. Tan, X. Zeng, and T. Zhuang, “Deep Time-Aware Item Evolution Network for Click-Through Rate Prediction,” in Proceedings of the 29th ACM International Conference on Information & Knowledge Management, in CIKM ’20. New York, NY, USA: Association for Computing Machinery, Oct. 2020, pp. 785–794. doi: 10.1145/3340531.3411952.
[32] J. Wu, R. Cai, and H. Wang, “Déjà vu: A Contextualized Temporal Attention Mechanism for Sequential Recommendation,” in Proceedings of The Web Conference 2020, in WWW ’20. New York, NY, USA: Association for Computing Machinery, Apr. 2020, pp. 2199–2209. doi: 10.1145/3366423.3380285.
[33] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated Graph Sequence Neural Networks.” arXiv, Sep. 22, 2017. doi: 10.48550/arXiv.1511.05493.
[34] J. Rappaz, J. McAuley, and K. Aberer, “Recommendation on Live-Streaming Platforms: Dynamic Availability and Repeat Consumption,” in Proceedings of the 15th ACM Conference on Recommender Systems, in RecSys ’21. New York, NY, USA: Association for Computing Machinery, Sep. 2021, pp. 390–399. doi: 10.1145/3460231.3474267.
[35] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
[36] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based Recommendations with Recurrent Neural Networks.” arXiv, Mar. 29, 2016. doi: 10.48550/arXiv.1511.06939.
[37] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural Attentive Session-based Recommendation,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, in CIKM ’17. New York, NY, USA: Association for Computing Machinery, Nov. 2017, pp. 1419–1428. doi: 10.1145/3132847.3132926.
[38] J. Tang and K. Wang, “Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding,” in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, in WSDM ’18. New York, NY, USA: Association for Computing Machinery, Feb. 2018, pp. 565–573. doi: 10.1145/3159652.3159656. |