博碩士論文 110423076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.15.206.88
姓名 王茂田(Mao-Tien Wang)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 基於圖序列的下一個項目和時間預測推薦系統
(Graph Sequence based recommendation system for next item and time prediction)
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
★ 利用分割式分群演算法找共識群解群體決策問題★ 以新奇的方法有序共識群應用於群體決策問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 根據過去的文獻研究,大部分的 Next-item 預測問題都專注於預測使用者可能感興趣的下一個項目。雖然有些研究會利用時間資訊來幫助預測使用者下一個互動的項目,或是預測使用者可能互動的項目及時間間隔,但目前尚未有研究同時預測使用者可能感興趣的下一項目、時間間隔及互動持續時間。然而,在大量的先前順序推薦模型研究中,圖形神經網路(GNN)被發現能夠充分納入整體資訊,增強資訊編碼的完整性,從而提高下一個項目預測的準確度。因此,本研究提出了一種名為 GSMRecIT 的模型,利用 GNN
圖神經網路對用戶序列進行嵌入處理。同時該模型使用 Transformer 以及注意力網路來決定不同序列資料的權重,以捕捉用戶的長期和短期偏好。並針對使用者感興趣的項目、時間間隔和互動持續時間進行 Top-N 預測。實驗結果顯示,本研究的方法在項目、時間間隔、互動持續時間三個方面的預測任務中都提高了預測的準確率。
摘要(英) Based on existing literature, most studies on next-item prediction focus on predicting the next item of interest to users. While some research incorporates temporal information to predict the next user interaction item or both the item and the time interval until the next interaction, there is currently no study that simultaneously predicts the next item, the time interval, and the duration of the interaction. However, extensive research on sequential recommendation models has shown that Graph Neural Networks (GNNs) effectively integrate overall information and enhance the integrity of information encoding, thereby improving the accuracy of next-item prediction.
Therefore, this study introduces GSMRecIT, a novel model that leverages GNNs for embedding processing on user sequences. Additionally, the model incorporates Transformer and attention networks to determine the weights of different sequence data, capturing users′ long-term and short-term preferences. Moreover, the model provides top-N predictions for items, time intervals, and interaction durations that users are interested in. Experimental results demonstrate that the proposed approach significantly enhances the prediction accuracy across all three aspects: item, interval and duration.
關鍵字(中) ★ 推薦系統
★ 序列推薦
★ 圖神經網路
★ 注意力機制
★ 項目和時間預測
★ Transformer
關鍵字(英) ★ Recommendation System
★ Sequential Recommendation
★ Graph Neural Network
★ Attention Mechanism
★ Transformer
論文目次 摘要 i
ABSTRACT ii
List of Figures iv
List of Tables iv
1.Introduction 1
2.Related work 6
2-1 Sequential Based Models 6
2-1-1 Sequential Pattern Mining Models 6
2-1-2 Markov Chains (MC) model 6
2-1-3 Deep learning-based sequential models 7
2-2 GNN based model 9
2-3 Time aware based models 10
3.Proposed approach 12
3-1 Model structure 12
3-2 Input Stage 13
3-3 Embedding Stage 14
3-4 Combine Stage 16
3-5 Hidden Network 16
3-5-1 Transformer Layer 16
3-5-2 Attention Network 19
3-6 Multitask-prediction 19
4.Experiments and results 21
4-1 Datasets 21
4-2 Compared method 22
4-3 Evaluation metrics 23
4-4 Experimental setting 24
4-5 Experimental results 25
4-5-1 Performance comparison for item, duration and interval prediction. 25
4-5-2 Ablation Study 32
4-5-3 Sensitivity analysis 34
5.Conclusion and future work 45
5-1 Conclusion 45
5-2 Limitations and future work 46
Reference 47
參考文獻 [1] D.-T. Le, H. W. Lauw, and Y. Fang, “Correlation-Sensitive Next-Basket Recommendation,” presented at the the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macau, China, Aug. 2019. Accessed: Jun. 08, 2023. [Online]. Available: https://www.ijcai.org/proceedings/2019/389
[2] Z. Zhao, Q. Yang, H. Lu, T. Weninger, D. Cai, X. He, and Y. Zhuang, “Social-aware movie recommendation via multimodal network learning,” IEEE Trans. Multimed., vol. 20, no. 2, pp. 430–440, 2017.
[3] Z. Nazari, C. Charbuillet, J. Pages, M. Laurent, D. Charrier, B. Vecchione, and B. Carterette, “Recommending podcasts for cold-start users based on music listening and taste,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 1041–1050.
[4] C. Wu, F. Wu, M. An, J. Huang, Y. Huang, and X. Xie, “NPA: neural news recommendation with personalized attention,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2019, pp. 2576–2584.
[5] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond the user-item matrix: A survey of the state of the art and future challenges,” ACM Comput. Surv. CSUR, vol. 47, no. 1, pp. 1–45, 2014.
[6] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized markov chains for next-basket recommendation,” in Proceedings of the 19th international conference on World wide web, 2010, pp. 811–820.
[7] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.
[8] Z. Li, H. Zhao, Q. Liu, Z. Huang, T. Mei, and E. Chen, “Learning from history and present: Next-item recommendation via discriminatively exploiting user behaviors,” in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 1734–1743.
[9] H. Ying, F. Zhuang, F. Zhang, Y. Liu, G. Xu, X. Xie, H. Xiong, and J. Wu, “Sequential recommender system based on hierarchical attention network,” in IJCAI International Joint Conference on Artificial Intelligence, 2018.
[10] L. Yu, C. Zhang, S. Liang, and X. Zhang, “Multi-Order Attentive Ranking Model for Sequential Recommendation,” Proc. AAAI Conf. Artif. Intell., vol. 33, no. 01, Art. no. 01, Jul. 2019, doi: 10.1609/aaai.v33i01.33015709.
[11] D. Wang, D. Xu, D. Yu, and G. Xu, “Time-aware sequence model for next-item recommendation,” Appl. Intell., vol. 51, no. 2, pp. 906–920, Feb. 2021, doi: 10.1007/s10489-020-01820-2.
[12] H. Jing and A. J. Smola, “Neural Survival Recommender,” in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, in WSDM ’17. New York, NY, USA: Association for Computing Machinery, Feb. 2017, pp. 515–524. doi: 10.1145/3018661.3018719.
[13] C. Ma, L. Ma, Y. Zhang, J. Sun, X. Liu, and M. Coates, “Memory Augmented Graph Neural Networks for Sequential Recommendation,” Proc. AAAI Conf. Artif. Intell., vol. 34, no. 04, Art. no. 04, Apr. 2020, doi: 10.1609/aaai.v34i04.5945.
[14] S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M. A. Orgun, L. Cao, F. Ricci, and P. S. Yu, “Graph Learning based Recommender Systems: A Review.” arXiv, May 13, 2021. doi: 10.48550/arXiv.2105.06339.
[15] L. Liu, L. Wang, and T. Lian, “CaSe4SR: Using category sequence graph to augment session-based recommendation,” Knowl.-Based Syst., vol. 212, p. 106558, Jan. 2021, doi: 10.1016/j.knosys.2020.106558.
[16] L. Wu, X. He, X. Wang, K. Zhang, and M. Wang, “A Survey on Accuracy-Oriented Neural Recommendation: From Collaborative Filtering to Information-Rich Recommendation,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 5, pp. 4425–4445, May 2023, doi: 10.1109/TKDE.2022.3145690.
[17] G.-E. Yap, X.-L. Li, and P. S. Yu, “Effective Next-Items Recommendation via Personalized Sequential Pattern Mining,” in Database Systems for Advanced Applications, S. Lee, Z. Peng, X. Zhou, Y.-S. Moon, R. Unland, and J. Yoo, Eds., in Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2012, pp. 48–64. doi: 10.1007/978-3-642-29035-0_4.
[18] U. Niranjan, R. B. V. Subramanyam, and V. Khanaa, “Developing a Web Recommendation System Based on Closed Sequential Patterns,” in Information and Communication Technologies, V. V. Das and R. Vijaykumar, Eds., in Communications in Computer and Information Science. Berlin, Heidelberg: Springer, 2010, pp. 171–179. doi: 10.1007/978-3-642-15766-0_25.
[19] M. Karimi, B. Cule, and B. Goethals, “On-the-Fly News Recommendation Using Sequential Patterns,” 2019.
[20] M. Eirinaki, M. Vazirgiannis, and D. Kapogiannis, “Web path recommendations based on page ranking and Markov models,” in Proceedings of the 7th annual ACM international workshop on Web information and data management, in WIDM ’05. New York, NY, USA: Association for Computing Machinery, Nov. 2005, pp. 2–9. doi: 10.1145/1097047.1097050.
[21] X. Wu, Q. Liu, E. Chen, L. He, J. Lv, C. Cao, and G. Hu, “Personalized next-song recommendation in online karaokes,” in Proceedings of the 7th ACM conference on Recommender systems, in RecSys ’13. New York, NY, USA: Association for Computing Machinery, Oct. 2013, pp. 137–140. doi: 10.1145/2507157.2507215.
[22] A. A. Ahmed and N. Salim, “Markov Chain Recommendation System (MCRS),” vol. 3, no. 1, 2016.
[23] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, “Recurrent Recommender Networks,” in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, in WSDM ’17. New York, NY, USA: Association for Computing Machinery, Feb. 2017, pp. 495–503. doi: 10.1145/3018661.3018689.
[24] T. Donkers, B. Loepp, and J. Ziegler, “Sequential User-based Recurrent Neural Network Recommendations,” in Proceedings of the Eleventh ACM Conference on Recommender Systems, in RecSys ’17. New York, NY, USA: Association for Computing Machinery, Aug. 2017, pp. 152–160. doi: 10.1145/3109859.3109877.
[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2017. Accessed: Jun. 08, 2023. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
[26] W.-C. Kang and J. McAuley, “Self-Attentive Sequential Recommendation,” in 2018 IEEE International Conference on Data Mining (ICDM), Jan. 2018, pp. 197–206. doi: 10.1109/ICDM.2018.00035.
[27] S. Zhang, Y. Tay, L. Yao, and A. Sun, “Next Item Recommendation with Self-Attention.” arXiv, Aug. 25, 2018. doi: 10.48550/arXiv.1808.06414.
[28] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-Based Recommendation with Graph Neural Networks,” Proc. AAAI Conf. Artif. Intell., vol. 33, no. 01, Art. no. 01, Jul. 2019, doi: 10.1609/aaai.v33i01.3301346.
[29] C. Xu, P. Zhao, Y. Liu, V. S. Sheng, J. Xu, F. Zhuang, J. Fang, and X. Zhou, “Graph Contextualized Self-Attention Network for Session-based Recommendation,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China: International Joint Conferences on Artificial Intelligence Organization, Aug. 2019, pp. 3940–3946. doi: 10.24963/ijcai.2019/547.
[30] J. Li, Y. Wang, and J. McAuley, “Time Interval Aware Self-Attention for Sequential Recommendation,” in Proceedings of the 13th International Conference on Web Search and Data Mining, in WSDM ’20. New York, NY, USA: Association for Computing Machinery, Jan. 2020, pp. 322–330. doi: 10.1145/3336191.3371786.
[31] X. Li, C. Wang, B. Tong, J. Tan, X. Zeng, and T. Zhuang, “Deep Time-Aware Item Evolution Network for Click-Through Rate Prediction,” in Proceedings of the 29th ACM International Conference on Information & Knowledge Management, in CIKM ’20. New York, NY, USA: Association for Computing Machinery, Oct. 2020, pp. 785–794. doi: 10.1145/3340531.3411952.
[32] J. Wu, R. Cai, and H. Wang, “Déjà vu: A Contextualized Temporal Attention Mechanism for Sequential Recommendation,” in Proceedings of The Web Conference 2020, in WWW ’20. New York, NY, USA: Association for Computing Machinery, Apr. 2020, pp. 2199–2209. doi: 10.1145/3366423.3380285.
[33] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated Graph Sequence Neural Networks.” arXiv, Sep. 22, 2017. doi: 10.48550/arXiv.1511.05493.
[34] J. Rappaz, J. McAuley, and K. Aberer, “Recommendation on Live-Streaming Platforms: Dynamic Availability and Repeat Consumption,” in Proceedings of the 15th ACM Conference on Recommender Systems, in RecSys ’21. New York, NY, USA: Association for Computing Machinery, Sep. 2021, pp. 390–399. doi: 10.1145/3460231.3474267.
[35] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
[36] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based Recommendations with Recurrent Neural Networks.” arXiv, Mar. 29, 2016. doi: 10.48550/arXiv.1511.06939.
[37] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural Attentive Session-based Recommendation,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, in CIKM ’17. New York, NY, USA: Association for Computing Machinery, Nov. 2017, pp. 1419–1428. doi: 10.1145/3132847.3132926.
[38] J. Tang and K. Wang, “Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding,” in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, in WSDM ’18. New York, NY, USA: Association for Computing Machinery, Feb. 2018, pp. 565–573. doi: 10.1145/3159652.3159656.
指導教授 陳彥良(Yen-Liang Chen) 審核日期 2023-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明