博碩士論文 106581603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:121 、訪客IP:3.137.159.134
姓名 蘇坎(Zuhaib Khan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於光無線通信和傳感高亮度、高速垂直共振腔面射型雷射陣列
(High-Brightness, High-Speed VCSEL Arrays for Optical Wireless Communication and Sensing)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
高速、高亮度的垂直共振腔面射型雷射(VCSELs)在當今的許多應用中都有使用,例如用於自動駕駛汽車、機器人和無人機的雷達光源、光學互連(OI)市場、3維(3D)感測和光學無線通信(OWC)通道,並對於發展 5G、6G 和衛星通信的下一代無線通信系統,具有相當大的潛力。
高 CW 功率(大約幾百毫瓦)、高亮度、高速光源在上述應用中為關鍵因素。
因此與邊射型雷射相比,VCSEL 在抗輻射性方面具有優勢,並且透過足夠的散熱,VCSEL 陣列的輸出功率可以隨二維尺寸成比例地增加。
為了實現高亮度輸出,VCSEL 陣列需要具有高輸出功率、窄發散角和微小的主動區,可以通過使用鋅擴散、表面浮雕、光子晶體或抗導腔體結構來製造出符合上述條件的單膜(SM)VCSEL陣列。然而,為了抑制這些 VCSEL 結構中的高階模態雷射,必須引入額外的腔內損耗,這通常會導致閾值電流增加(Ith)和雷射的量子效率降低。此外,在不同的偏壓電流下,這些單膜(SM)或多膜(MM) VCSEL輸出的偏振態通常不穩定。
利用X光雙晶測量結果驗證電鍍銅基板引起的拉伸應變,可以獲得高度單膜(SM) 和單偏振輸出光束的 VCSEL 陣列,並且具有最小的腔內損耗和更小的閾值電流。然而,由於高度單膜(SM) VCSEL陣列的高光功率密度,導致空間燒孔(SHB)效應,致使高速數據傳輸出現顯著的低頻roll-of和眼圖質量下降。
此外,單膜(SM)VCSEL 通常具有較低的阻尼係數,這會導致EO和頻率響應中出現明顯的共振,導使眼圖質量顯著下降。
為了進一步提高最大光功率,同時保持高亮度和提高長距離OWC應用所需的眼圖質量,想出了一種新穎的VCSEL陣列結構,設計的Mesa擁有交叉-並聯多個獨立VCSEL腔體。這種陣列在光功率、窄發散角、更低的 RIN 和傳輸眼圖,以上這些方面能得到改善。
這些增強的靜態/動態性能是由於VCSEL的Mesa和腔體擴展產生之每個單元VCSEL的單膜(SM)輸出光子密度減弱。
此外,如果我們進一步希望將光無線通信(OWC)和數據中心市場中各種微型或奈米衛星之間的鏈接距離增加到幾公里,並提高數據傳輸速率,那麼VCSEL 光源則必須具有高連續波(CW)功率和更寬且平穩的EO 頻率響應圖。
另外,透過不均勻的電流注入雙電極,導致相鄰 VCSEL 單元之間的光耦合較弱,我們得以證明,超緊密陣列佈局和光孔之間具有小間距尺寸的Pad電極具有高光功率輸出。由於我們陣列中的這種弱耦合,使得頻率響應(EO)更加平穩,從而導致眼圖質量進一步改善。
這種新型陣列很有可能進一步提高下一代 OWC 通道的傳輸性能。
摘要(英) Abstract
High-speed and high-brightness vertical-cavity surface emitting lasers (VCSELs) are utilized in numerous applications nowadays such as light source in development of lidar for use in autonomous cars, robots, and unmanned aerial vehicles, optical interconnect (OI) markets, 3-dimensional (3-D) sensing and optical wireless communication (OWC) channels which is one potential solution for development of the next generation of wireless communication systems for 5G, 6G and satellite communications. A high CW power (hundreds of mW), high-brightness, high-speed light source is critical in the aforementioned applications. In comparison to their counterparts, edge-Emitting Lasers (EELs), VCSELs have an advantage in terms of radiation resistance and by providing adequate heat dissipation, the output power of a VCSEL array can be increased proportionally with size of 2-D VCSEL array. To achieve high-brightness output, a VCSEL array with a high output power, narrow divergence angle and small active area is highly desirable which can be achieved by fabricating VCSEL array of single-mode (SM) VCSEL units either by using zinc (Zn)-diffusion, surface relief, photonic crystal or anti-guide (leaky) cavity structures. However, to suppress higher-order mode lasing in these VCSEL structures, additional intra cavity loss must be introduced, which generally leads to an increase in the threshold current (Ith) and a decrease in quantum efficiency of the laser. In addition, under different bias currents, the polarization states of the output from these SM or MM VCSELs are usually not stable. VCSEL array structure capable of producing highly SM and single-polarized output beams with minimum intra-cavity loss and less threshold current can be obtained using tensile strain induced by the integration of the electroplated copper substrate verified by the double-crystal x-ray measurement results. However, due to high optical power density of highly SM VCSEL arrays, it will result in spatial hole burning (SHB) effect that leads to significant lower frequency roll-off and degradation of eye-pattern quality for high-speed data transmission. Additionally, SM VCSELs typically have a reduced damping factor (γ), which causes noticeable resonances in the E-O and (RIN) frequency responses, resulting in significant deterioration of the eye pattern quality. In order to further improve the maximum optical power while maintaining high brightness and enhancing the eye pattern quality that are required for long-reach OWC applications, a novel VCSEL array structure is designed in which several independent single VCSEL cavities are connected in parallel and having criss-cross mesas connecting each VCSEL cavity. The performance of these arrays improves in terms of optical power, narrow divergence angle, lower RIN, and better eye-opening quality for high-speed data transmission. These enhanced static/dynamic performance is due to weakening of photon density in the SM output from each VCSEL unit produced by the extension of mesas as well as cavity of VCSEL. Moreover, if we further want to increase linking distance between various micro or nanosatellites in optical wireless communication (OWC) and data center market up to several kilometers with increased data transmission rate, then VCSEL light sources having high continuous wave (CW) power with wider and dampened E-O frequency response is highly desired. A novel design in both ultra-compact array layout and pad electrodes with a small pitch size (20 μm) between the light emission apertures has been demonstrated that possess high (CW) optical output power, results in weak optical coupling between neighboring VCSEL units by the non-uniform current injection from dual electrodes. Due to such such weak coupling in our array, the electrical-optical (E-O) frequency response is dampened more that substantially leads to further improvement in eye-pattern quality. Such novel array has high possibility to further improve transmission performance in the next generation OWC channel.
關鍵字(中) ★ 光無線通信
★ 導致空間燒孔效應
★ 垂直腔面發射激光器
關鍵字(英) ★ Optical wireless communication
★ Spatial hole burning effect
★ Vertical Cavity surface emitting lasers (VCSEL)
論文目次 Contents

Abstract (English)………………………………………………………………………………….(i)
Abstract (Chinese)………………………………………………………………………………..(iii)
Acknowledgement………………………………………………………………………........(iv)
Contents…………………………………………………………………………………...........(vi)
List of figures ……………………………………………………………………………... (viii)
List of tables……………………………………………………………………………………... (xiv)
Chapter 1 Introduction
1.1 Advances in LiDAR sensing
techniques……………………………………….1
1.2 Progress in next generation Optical Wireless
Communication (OWC)………..4
1.3 Light sources for OWC and sensing
....……………………………………….…..8
1.4 Our novel VCSEL structure for OWC and
sensing…………………………….11
Chapter 2 Design and Fabrication of High-Brightness VCSEL
array for sensing
2.1 Epitaxy of High-Power VCSEL
array……………………………………………17
2.2 Fabrication of High-Brightness VCSEL array
…………………………………...18
2.3 Measurement setup for High-Brightness VCSEL
array………………………….21
2.4 Influence of strain on mode characteristics of
VCSEL array…………………….28
Chapter 3 High-Brightness, High-speed VCSEL array for OWC
3.1 Single-mode high-speed VCSEL…………………………………………………44
3.2 Challenges in High-Brightness, High- speed Single
mode VCSELs……………..48
3.3 Optical waveguide and external strain design for
OWC………………………......50
3.4 Coupled cavity and novel electrode design for
OWC…………………………......63
Chapter 4 Future work
4.1 Top side electroplated
substrate……………………………………………………72
4.2 ViBO (VCSELs with integrated backside
substrate)…………………………….74
4.3 VCSELs for lower atmospheric
losses…………………………………………76
References……………………………………………………………………………………77
Publication List……………………………………………………………………83
參考文獻 [1] P. Boulay and A. Debray. “lidar to start large scale mass production an interview with robosense”
https://www.yolegroup.com/player-interviews/lidar-to-start-large-scale-mass-production-an-interview- with-robosense/ (accessed Dec. 1, 2022)
[2] J.-W. Shi, J.-I. Guo, M. Kagami, P. Suni, and O. Ziemann, “Photonic technologies for autonomous cars: feature introduction,” Opt. Express, vol. 27, no. 5, pp. 7627–7628, Mar. 2019.
[3] J. Skidmore, “Semiconductor lasers for 3-D sensing,” Opt. Photonics News, vol. 30, no. 2, pp. 28–33, Feb. 2019.
[4] J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P.Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE , vol. 6908, Jan. 2008, Art. no. 690808.
[5] H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE, vol. 10938, Feb. 2018, Art no. 109380E.
[6] H.Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M.Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE, vol. 5594, Dec. 2004.
[7] E. Hegblom et al., "Addressable High-Performance Multi-junction VCSEL Arrays for Automotive and Mobile LiDAR," 2021 27th International Semiconductor Laser Conference (ISLC), 2021, pp. 1-2.
[8] P. Shubert, A. Cline, J. McNally, R. Pierson, “System Design of Low SWaP Optical Terminals for Free Space Optical Communications,” Proc. SPIE, vol. 10096, Feb. 2017, Art. no.100960U.
[9] D. Guilhot and P. R.-Pleguezuelo, “Laser Technology in Photonic Applications for Space,” Instruments, vol. 3, no. 3, pp. 50, Sep. 2019.
[10] T. S. Ross and W. P. Latham, “Appropriate measures and consistent standard for high energy laser beam quality”. J. Directed Energy, vol. 2 no. 1, pp. 22–58, Aug. 2006
[11] P. Shukla, J. Lawrence and Y. Zhang, “Understanding laser beam brightness: a review and new prospective in material processing” Opt. Laser Technol, vol. 75, pp. 40–51, Mar. 2015.
[12] M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,′′ Nature Mater., vol. 18, pp. 121-128, Feb. 2019.
[13] J. -L. Yen, K. -L. Chi, J. -W. Jiang, Y. -J. Yang and J. -W. Shi, "Single-Mode Vertical-Cavity Surface-Emitting Lasers Array with Zn-Diffusion Aperture for High-Power, Single-Spot, and Narrow Divergence Angle Performance," IEEE Journal of Quantum Electronics, vol. 50, no. 10, pp. 1-8, Oct. 2014.
[14] Z. Khan, J.-C. Shih, R.-L. Chao, T.-L. Tsai, H.-C. Wang, G.-W. Fan,Y.-C. Lin, and J.-W. Shi, ``High-brightness and high-speed vertical cavity surface-emitting laser arrays,′′ Optica, vol. 7, no. 4, pp. 267-275, Apr. 2020.
[15] A. Haglund, J. S. Gustavsson, J.Vukusic, P. Modh, and A. Larsson, ``Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,′′ IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb. 2004.
[16] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, ``High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850-nm wavelength,′′ IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1121-1123, Jul. 2008.
[17] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, ``High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,′′ Appl. Phys. Lett., vol. 85, pp. 5161-5163, Nov. 2004.
[18] N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, Jr., J.-R. Kropp, M. Augustin, L. Chorchos, J. P. Turkiewicz, and J.-W. Shi, “Anti wave guiding vertical cavity surface emitting laser at 850 nm: From concept to advances in high speed data transmission,′′ Opt. Exp., vol. 26, no. 1, pp. 445-453, Jan. 2018.
[19] J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects,′′ J. Lightwave. Technol., vol. 31, no. 24, pp. 4037-4044, Dec. 2013.
[20] A. Haglund, J. S. Gustavsson, P. Modh, and A. Larsson, “Dynamic mode stability analysis of surface relief VCSELs under strong RF modulation,′′ IEEE Photon. Technol. Lett., vol. 17, no. 8, pp. 1602-1604, Aug. 2005.
[21] T. Grundl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single mode, high-power VCSELs by inhibition of spatial hole burning,′′ IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, Jul. 2013, Art. no. 1700913.
[22] S.- L. Tan, Y.- K. Yap, J.- J. Wong, J.- D. Ng, G. Grenci, and A.- J. Danner, "High pulsed power VCSEL arrays with polymer microlenses formed by photo acid diffusion," Opt. Express, vol. 28, no. 14, pp. 20095-20105, Jul. 2020.
[23] J. E. Bowers, “High Speed Semiconductor Laser Design and Performance”, Solid State Electronics, vol. 30, no. 1, pp. 1-11, Jan. 1987
[24] C.-T. Tsai, C.-H. Cheng, H.-C. Kuo, G.-R. Lin, “Toward high-speed visible laser lighting based optical wireless communications”, Progress in Quantum Electronics, vol. 67, Sep. 2019.
[25] R.- F. Carson, E.- W. Taylor, A.- H. Paxton, H.- Schone, K.- D. Choquette, H.- Q. Hou, M.- E. Warren, K.- L. Lear, “ Surface-emitting laser technology and its application to the space radiation environment”, Proc. SPIE, vol. 1028806, Jul. 1997.
[26] M. Behringer and K. Johnson, "Laser light sources for LIDAR," 2021 27th International Semiconductor Laser Conference (ISLC), 2021, pp. 1-2, Nov. 2021.
[27] A. Knigge, "Diode Lasers with Internal Wavelength Stabilization for LiDAR Applications," 2021 27th International Semiconductor Laser Conference (ISLC), 2021, pp. 1-2, Nov. 2021.
[28] J. Luan, Y. Han, S. Yang, R. Zhang, Q. Tian, P. He, D. Liu, and M. Zhang, "Experiment demonstration of high speed 1.3 µm grating assisted surface-emitting DFB lasers," Opt. Express, vol. 30, no. 14, pp. 25111-25120, Jul. 2022.
[29] T. G. Dziura, Y. J. Yang, R. Fernandez and S.-C. Wang, “Single mode surface emitting laser using partial mirror disordering”, Electronics Letters, vol. 29, no. 14, pp. 1236-1237, Jul. 1993.
[30] J.-W Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, Y.-J. Yang, “Single-Mode, High-Speed, and High-Power Vertical-Cavity Surface-Emitting Lasers at 850 nm for Short to Medium Reach (2 km) Optical Interconnects”, IEEE/OSA J. Lightwave Technol., vol. 31, no. 24, pp. 4037-4044, Dec. 2013.
[31] C. C. Chen, S. J. Liaw and Y. J. Yang, “Stable single-mode operation of an 850-nm VCSEL with a higher order mode absorber formed by shallow Zn diffusion” IEEE Photonics Technology Letters., vol. 13, no. 4, pp. 266-268, Apr. 2001.
[32] J.-W. Shi, J.-C. Yan, J.-M. Wun, J. (J.) Chen, and Y.-J. Yang, “Oxide relief and Zn-diffusion 850 nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40 Gbit/sec operations,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, Mar./Apr. 2013, Art. no. 7900208.
[33] J. -C. Shih, Z. Khan, Y. -H. Chang and J. -W. Shi, "High-Brightness VCSEL Arrays with Inter-Mesa Waveguides for the Enhancement of Efficiency and High-Speed Data Transmission," IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 1, pp. 1-11, Jan.-Feb. 2022, Art no. 1501211.
[34] Y.-C. Zhao, Z. Ahmad, W.-M. Long, Z. Khan, N. Ledenstov Jr., M.- B. Sanayeh, T.-L. Pan, C.-C. Chen, C.-J. Chang, T.-C. Lu, N. N.Ledenstov and J.-W. Shi,"Separated Electrodes for the Enhancement of High-Speed Data Transmission in Quasi-Single- Mode Vertical-Cavity Surface-Emitting Laser Arrays" Optics Express, vol. 30, no. 15, pp. 26690-26700, Jul. 2022.
[35] S. T. M. Fryslie, M. P. T. Siriani, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz Modulation via Resonance Tuning in Single-Mode Coherent Vertical-Cavity Laser Arrays,” IEEE Photonics Technol. Lett. vol. 27, no. 4, pp. 415–418, Feb. 2015.
[36] X. Gu, M. Nakahama, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “850 nm transverse-coupled-cavity vertical-cavity surface-emitting laser with direct modulation bandwidth of over 30 GHz,” Appl. Phys. Express, vol. 8, no. 8, Jul. 2015, Art. no. 082702.
[37] E. Heidari, H. Dalir, M. Ahmed, V.-J. Sorger, and R.-T. Chen, “Hexagonal transverse-coupled-cavity VCSEL redefining the high-speed lasers,” Nanophotonics, vol. 9, no. 16, pp. 4743–4748, Oct, 2020.
[38] J.-W. Shi, Z. Khan, R.-H. Horng, H.-Y. Yeh, C.-K. Huang, C.-Y. Liu, J.-C. Shih, Y.-H. Chang, J.-L. Yen, and J.-K. Sheu, "High-power and single-mode VCSEL arrays with single-polarized outputs by using package-induced tensile strain," Opt. Lett., vol. 45, no. 17, pp. 4839-4842, Sep. 2020.
[39] D. G. Deppe, and N. Holonyak, Jr., “Atom diffusion and impurity‐induced layer disordering in quantum well III‐V semiconductor heterostructure” J. Appl. Phys., vol. 64, no. 12, pp. R93-R113, Dec. 1988
[40] L.A. Coldren, S.W. Corzine, and Masanovic, “Diode Lasers and Photonic Integrated Circuits” 2nd Edition, Ch. 3 (John Wiley & Sons, Inc.), 2012.
[41] H. A. Haus, “Waves and fields in optoelectronics”. Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1984.
[42] C. -L. Cheng, N. Ledentsov, Z. Khan, J. -L. Yen, N. N. Ledentsov and J. -W. Shi, "Ultrafast Zn-Diffusion and Oxide-Relief 940 nm Vertical-Cavity Surface-Emitting Lasers Under High-Temperature Operation," IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 6, pp. 1-7, Nov.-Dec. 2019, Art no. 1700507.
[43] J. -L. Yen, X. -N. Chen, K. -L. Chi, J. Chen and J. -W. Shi, "850 nm Vertical-Cavity Surface-Emitting Laser Arrays with Enhanced High-Speed Transmission Performance Over a Standard Multimode Fiber," Journal of Lightwave Technology, vol. 35, no. 15, pp. 3242-3249, 1 Aug. 2017.
[44] II-VI Laser Enterprise, http://www.laserenterprise.com/index.html
Product: APS6401010002
[45] J. Nissinen and J. Kostamovaara, "A High Repetition Rate CMOS Driver for High-Energy Sub-ns Laser Pulse Generation in SPAD-Based Time-of-Flight Range Finding," IEEE Sensors Journal, vol. 16, no. 6, pp. 1628-1633, Mar. 2016.
[46] J.M. Osterman, and R. Michalzik, “VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface- Emitting Lasers”. Springer, Berlin (Germany), 2013.
[47] T.R. Raddo, K. Panajotov, B.-H.V. Borges, et al. “Strain induced polarization chaos in a solitary VCSEL” Sci Rep, vol. 7, no. 1, Oct. 2017, Art. no. 14032.
[48] K.D. Choquette, D.A Richie and R.E. Leibenguth, “Temperature dependence of gain guided vertical cavity surface emitting laser polarization”, Appl. Phys. Lett., vol. 64, pp. 2062-2064, Jun. 1998.
[49] K.D. Choquette and R.E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries”, IEEE Photonics Technology Letters., vol. 6, no. 1, pp.40-42, Jan. 1994.
[50] E. Haglund, M. Jahed, and J.S. Gustavsson, “High-power single transverse and polarization mode VCSEL for silicon photonics integration”, Opt. Express., vol. 27, no. 13, pp. 18892-18899, Jun. 2019.
[51] A. N. Al-Omari, and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink” IEEE Photonics Technology Letters., vol. 17, no. 9, pp. 1767-1769, Aug. 2005.
[52] H. Kazemi, E. Sarbazi, M. D. Soltani, M. Safari and H. Haas, "A Tb/s Indoor Optical Wireless Backhaul System Using VCSEL Arrays," in Proceedings of IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communication, pp. 1-6, 2020.
[53] M. Z. Chowdhury, M. T. Hossan, A. Islam and Y. M. Jang, "A Comparative Survey of Optical Wireless Technologies: Architectures and Applications," IEEE Access, vol. 6, pp. 9819-9840, Jan. 2018.
[54] R.F. Carson, E.W. Taylor, A.H. Paxton, H. Schone, K.D. Choquette, H.Q. Hou, M.E. Warren and K.L. Lear “Surface-emitting laser technology and its application to the space radiation environment” Proc. SPIE, vol. 10288, Jul. 1997, Art. no. 1028806.
[55] P.M. Goorjian, "Free-Space Optical Communication for CubeSats in Low Lunar Orbit (LLO)", Proc. SPIE, vol. 11272, Mar. 2020, Art. no.1127214.
[56] N. Haghighi, P. Moser and J. A. Lott, "Power, Bandwidth, and Efficiency of Single VCSELs and Small VCSEL Arrays," IEEE J. Sel. Top. Quantum Electronics., vol.25, no. 6, Nov./Dec. 2019, Art. no.1700615.
[57] D. M. Kuchta, J. Gamelin, J. D. Walker, J. Lin, K. Y. Lau, and J. S. Smith, “Relative intensity noise of vertical cavity surface emitting lasers,” Appl. Phys. Lett., vol. 62, pp.1194-1196, 1993.
[58] R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable High-CW-Power High-Speed 980-nm VCSEL Arrays,” IEEE J. of Quantum Electronics., vol. 46, no.11, pp.1590-1596, Aug. 2010.
[59] P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 17, no.6, 1603-1613, Nov./Dec. 2011.
[60] F. Koyama and X. Gu, "Beam Steering, Beam Shaping, and Intensity Modulation Based on VCSEL Photonics," IEEE J. Sel. Top. Quantum Electronics., vol. 19, no.4, Jul./Aug. 2013, Art. no. 1701510.
[61] N. Haghighi, P. Moser, M. Zorn and J. A. Lott, "19-element vertical cavity surface emitting laser arrays with inter-vertical cavity surface emitting laser ridge connectors,” J. Phys. Photonics., vol. 2, no. 4, Oct. 2020, Art. no. 04LT01.
[62] T. Yoshikawa, T. Kawakami, H. Saito, H. Kosaka, M. Kajita, K. Kurihara, Y. Sugimoto, and K. Kasahara, "Polarization-controlled single-mode VCSEL," IEEE Journal of Quantum Electronics., vol. 34, no. 6, pp.1009-1015, Jun. 1998.
[63] D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 67, no. 15, pp. 2141-2143, Aug. 1995.
[64] P.-C. Pan, D. Nag, Z. Khan, C.-J. Chen, J.-W. Shi, A. Laha, and R.-H. Horng, "Effect of Thermal Management on the Performance of VCSELs," IEEE Transactions on Electron Devices., vol. 67, no. 9, pp. 3736-3739, Jul. 2020.
[65] J.-W. Shi, L.-C. Yang, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Ying-Jay Yang, “Minimization of Damping in the Electro optic Frequency Response of High-Speed Zn-Diffusion Single-Mode Vertical-Cavity Surface Emitting Lasers” IEEE Photon. Technol. Lett., vol.19, no.24, pp. 2057-2059, Dec. 2007.
[66] Y.-G. Ju, Y.-H. Lee, H.-K. Shin, and II Kim, “Strong polarization selectivity in 780-nm vertical-cavity surface-emitting lasers grown on misoriented substrates,” Appl. Phys. Lett., vol. 71, no. 6, pp. 741-743, Jun. 1997.
[67] S.-E. Hashemi,“Relative Intensity Noise (RIN) in High-Speed VCSELs for Short Reach Communication,” Master Thesis, Chalmers University of Technology, 2012.
[68] E. Lamothe, L.- D. A. Lundeberg, and E. Kapon, “Eigenmode analysis of phased-coupled VCSEL arrays using spatial coherence measurements,” Opt. Lett., vol. 36, no. 15, pp. 2916–2918, Aug. 2011.
[69] Intelligent Epitaxy Technology, Inc., 1250 E Collins Blvd., Richardson, TX 75081, http://intelliepi.com
[70] H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. H. Bimberg, “Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs,” IEEE J. Quantum Electron., vol. 50, no. 8, pp. 613–621, Aug. 2014.
[71] R. Safaisini, E. Haglund, P. Westbergh, J.S. Gustavsson, and A. Larsson, “20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL,” Electron. Lett., vol. 50, no. 1, pp. 40–42 Jan. 2014.

[72] K.-L. Chi, Y.-X. Shi, X.-N. Chen, Jason (Jyehong) Chen, Y.-J. Yang, J.-R Kropp, N. Ledentsov Jr, M. Agustin, N.N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-Mode 850 nm VCSELs for 54 Gbit/sec On-Off Keying Transmission Over 1 km Multi-Mode Fiber,” IEEE Photonics Technol. Lett., vol. 28, no. 12, pp. 1367–1370, Mar. 2016.
[73] M.T. Johnson, D.F. Siriani, M.-P. Tan and K.D. Choquette, “Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays”, App. Phys. Lett., vol. 103, Nov. 2013, Art. no. 201115
[74] L. Bao, N.-H. Kim, L.J. Mawst, N.N. Elkin, V.N. Troshchieva, D.V. Vysotsky and A.P. Napartovich, “Near-diffraction-limited coherent emission from large aperture antiguided vertical-cavity surface-emitting laser arrays”, App. Phys. Letters, vol. 84, no. 3, Jan. 2004
[75] D. F. Siriani and K. D. Choquette, “In-phase, coherent photonic crystal vertical-cavity surface-emitting laser arrays with low divergence,” Electron. Lett., vol. 46, no. 10, pp. 712–714, 2010.
[76] D. F. Siriani and K. D. Choquette, "Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays," in IEEE Photonics Technology Letters, vol. 23, no. 3, pp. 167-169, Feb.1, 2011.
[77] D. Zhou, A.P. Napartovich, N.N. Elkin, D.V. Vysotsky, L.J. Mawst, “Modal characteristics of 2-D antiguided VCSEL arrays, Proc. SPIE, vol. 4649, Jun. 2002.
[78] N. Haghighi, W. Głowadzka, T. Czyszanowski, M. Zorn and J. A. Lott, "940 nm VCSEL arrays for optical wireless," 2022 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 2022, pp. 1-2, doi: 10.1109/IPC53466.2022.9975628.
[79] J.-F. Seurin, G. Xu, Q. Wang, B. Guo, R.V. Leeuwen, A. Miglo, P. Pradhan, J.D. Wynn, V. Khalfin, C. Ghosh, “High Brightness pump sources using 2D VCSEL arrays”, Proc. SPIE, vol. 7615, Feb. 2010, Art. no. 76150F.
[80] Z. Khan, Y.-H. Chang, T.-L. Pan, Y.-C. Zhao, Y.-Y. Huang, C.-H. Lee, J.-S. Chang, C.-Y. Liu, C.-Y. Lee, C.-Y. Fang, and J.-W. Shi, “High-Brightness, High-Speed, and Low-Noise VCSEL Arrays for Optical Wireless Communication,” IEEE Access, vol. 10, pp. 2303-2317, Dec. 2021.
[81] K. L. Lear, V. M. Hietala, H. Q. Hou, J. Banas, B. E. Hammons, J. Zolper, and S. P. Kilcoyne, "High-Speed 850 nm Oxide-Confined Vertical Cavity Surface Emitting Lasers," OSA Trends in Optics and Photonics Series, Mar. 1997, paper UC2.
[82] A. N. Al-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang and K. L. Lear, "Low thermal resistance high-speed top-emitting 980-nm VCSELs," IEEE Photonics Technology Letters, vol. 18, no. 11, pp. 1225-1227, June 2006.
[83] https://www.trumpf.com/en_INT/products/vcsel-solutions-photodiodes/integrated-vcsel-solutions/vibo/
[84] M. Fingas, C.E. Brown, “Oil Spill science and technology”, second edition, 2017.
[85] N. Ledentsov Jr., L. Chorchos, O.Y. Makarov, M.B. Sanayeh, J.-R. Kropp, I.E. Titkov, V.A. Shchukin, V.P. Kalosha, J.P. Turkiewicz and N.N. Ledentsov, “Advances in design and application of compact VCSEL arrays from multicore fiber to optical wireless and beyond”, Proc. SPIE, vol. 12020, Mar. 2022, Art. no. 1202008.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2023-3-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明