參考文獻 |
[1] P. Boulay and A. Debray. “lidar to start large scale mass production an interview with robosense”
https://www.yolegroup.com/player-interviews/lidar-to-start-large-scale-mass-production-an-interview- with-robosense/ (accessed Dec. 1, 2022)
[2] J.-W. Shi, J.-I. Guo, M. Kagami, P. Suni, and O. Ziemann, “Photonic technologies for autonomous cars: feature introduction,” Opt. Express, vol. 27, no. 5, pp. 7627–7628, Mar. 2019.
[3] J. Skidmore, “Semiconductor lasers for 3-D sensing,” Opt. Photonics News, vol. 30, no. 2, pp. 28–33, Feb. 2019.
[4] J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P.Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE , vol. 6908, Jan. 2008, Art. no. 690808.
[5] H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE, vol. 10938, Feb. 2018, Art no. 109380E.
[6] H.Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M.Weyers, and G. Traenkle, “Design and realization of high-power DFB lasers,” Proc. SPIE, vol. 5594, Dec. 2004.
[7] E. Hegblom et al., "Addressable High-Performance Multi-junction VCSEL Arrays for Automotive and Mobile LiDAR," 2021 27th International Semiconductor Laser Conference (ISLC), 2021, pp. 1-2.
[8] P. Shubert, A. Cline, J. McNally, R. Pierson, “System Design of Low SWaP Optical Terminals for Free Space Optical Communications,” Proc. SPIE, vol. 10096, Feb. 2017, Art. no.100960U.
[9] D. Guilhot and P. R.-Pleguezuelo, “Laser Technology in Photonic Applications for Space,” Instruments, vol. 3, no. 3, pp. 50, Sep. 2019.
[10] T. S. Ross and W. P. Latham, “Appropriate measures and consistent standard for high energy laser beam quality”. J. Directed Energy, vol. 2 no. 1, pp. 22–58, Aug. 2006
[11] P. Shukla, J. Lawrence and Y. Zhang, “Understanding laser beam brightness: a review and new prospective in material processing” Opt. Laser Technol, vol. 75, pp. 40–51, Mar. 2015.
[12] M. Yoshida, M. De Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta, and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,′′ Nature Mater., vol. 18, pp. 121-128, Feb. 2019.
[13] J. -L. Yen, K. -L. Chi, J. -W. Jiang, Y. -J. Yang and J. -W. Shi, "Single-Mode Vertical-Cavity Surface-Emitting Lasers Array with Zn-Diffusion Aperture for High-Power, Single-Spot, and Narrow Divergence Angle Performance," IEEE Journal of Quantum Electronics, vol. 50, no. 10, pp. 1-8, Oct. 2014.
[14] Z. Khan, J.-C. Shih, R.-L. Chao, T.-L. Tsai, H.-C. Wang, G.-W. Fan,Y.-C. Lin, and J.-W. Shi, ``High-brightness and high-speed vertical cavity surface-emitting laser arrays,′′ Optica, vol. 7, no. 4, pp. 267-275, Apr. 2020.
[15] A. Haglund, J. S. Gustavsson, J.Vukusic, P. Modh, and A. Larsson, ``Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,′′ IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb. 2004.
[16] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, ``High power and high-speed Zn-diffusion single fundamental-mode vertical cavity surface-emitting lasers at 850-nm wavelength,′′ IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1121-1123, Jul. 2008.
[17] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, ``High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,′′ Appl. Phys. Lett., vol. 85, pp. 5161-5163, Nov. 2004.
[18] N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, Jr., J.-R. Kropp, M. Augustin, L. Chorchos, J. P. Turkiewicz, and J.-W. Shi, “Anti wave guiding vertical cavity surface emitting laser at 850 nm: From concept to advances in high speed data transmission,′′ Opt. Exp., vol. 26, no. 1, pp. 445-453, Jan. 2018.
[19] J.-W. Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, and Y.-J. Yang, “Single-mode, high-speed, and high-power vertical-cavity surface-emitting lasers at 850 nm for short to medium reach (2 km) optical interconnects,′′ J. Lightwave. Technol., vol. 31, no. 24, pp. 4037-4044, Dec. 2013.
[20] A. Haglund, J. S. Gustavsson, P. Modh, and A. Larsson, “Dynamic mode stability analysis of surface relief VCSELs under strong RF modulation,′′ IEEE Photon. Technol. Lett., vol. 17, no. 8, pp. 1602-1604, Aug. 2005.
[21] T. Grundl, P. Debernardi, M. Müller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, and M.-C. Amann, “Record single mode, high-power VCSELs by inhibition of spatial hole burning,′′ IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 4, Jul. 2013, Art. no. 1700913.
[22] S.- L. Tan, Y.- K. Yap, J.- J. Wong, J.- D. Ng, G. Grenci, and A.- J. Danner, "High pulsed power VCSEL arrays with polymer microlenses formed by photo acid diffusion," Opt. Express, vol. 28, no. 14, pp. 20095-20105, Jul. 2020.
[23] J. E. Bowers, “High Speed Semiconductor Laser Design and Performance”, Solid State Electronics, vol. 30, no. 1, pp. 1-11, Jan. 1987
[24] C.-T. Tsai, C.-H. Cheng, H.-C. Kuo, G.-R. Lin, “Toward high-speed visible laser lighting based optical wireless communications”, Progress in Quantum Electronics, vol. 67, Sep. 2019.
[25] R.- F. Carson, E.- W. Taylor, A.- H. Paxton, H.- Schone, K.- D. Choquette, H.- Q. Hou, M.- E. Warren, K.- L. Lear, “ Surface-emitting laser technology and its application to the space radiation environment”, Proc. SPIE, vol. 1028806, Jul. 1997.
[26] M. Behringer and K. Johnson, "Laser light sources for LIDAR," 2021 27th International Semiconductor Laser Conference (ISLC), 2021, pp. 1-2, Nov. 2021.
[27] A. Knigge, "Diode Lasers with Internal Wavelength Stabilization for LiDAR Applications," 2021 27th International Semiconductor Laser Conference (ISLC), 2021, pp. 1-2, Nov. 2021.
[28] J. Luan, Y. Han, S. Yang, R. Zhang, Q. Tian, P. He, D. Liu, and M. Zhang, "Experiment demonstration of high speed 1.3 µm grating assisted surface-emitting DFB lasers," Opt. Express, vol. 30, no. 14, pp. 25111-25120, Jul. 2022.
[29] T. G. Dziura, Y. J. Yang, R. Fernandez and S.-C. Wang, “Single mode surface emitting laser using partial mirror disordering”, Electronics Letters, vol. 29, no. 14, pp. 1236-1237, Jul. 1993.
[30] J.-W Shi, Z.-R. Wei, K.-L. Chi, J.-W. Jiang, J.-M. Wun, I.-C. Lu, J. Chen, Y.-J. Yang, “Single-Mode, High-Speed, and High-Power Vertical-Cavity Surface-Emitting Lasers at 850 nm for Short to Medium Reach (2 km) Optical Interconnects”, IEEE/OSA J. Lightwave Technol., vol. 31, no. 24, pp. 4037-4044, Dec. 2013.
[31] C. C. Chen, S. J. Liaw and Y. J. Yang, “Stable single-mode operation of an 850-nm VCSEL with a higher order mode absorber formed by shallow Zn diffusion” IEEE Photonics Technology Letters., vol. 13, no. 4, pp. 266-268, Apr. 2001.
[32] J.-W. Shi, J.-C. Yan, J.-M. Wun, J. (J.) Chen, and Y.-J. Yang, “Oxide relief and Zn-diffusion 850 nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40 Gbit/sec operations,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 2, Mar./Apr. 2013, Art. no. 7900208.
[33] J. -C. Shih, Z. Khan, Y. -H. Chang and J. -W. Shi, "High-Brightness VCSEL Arrays with Inter-Mesa Waveguides for the Enhancement of Efficiency and High-Speed Data Transmission," IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 1, pp. 1-11, Jan.-Feb. 2022, Art no. 1501211.
[34] Y.-C. Zhao, Z. Ahmad, W.-M. Long, Z. Khan, N. Ledenstov Jr., M.- B. Sanayeh, T.-L. Pan, C.-C. Chen, C.-J. Chang, T.-C. Lu, N. N.Ledenstov and J.-W. Shi,"Separated Electrodes for the Enhancement of High-Speed Data Transmission in Quasi-Single- Mode Vertical-Cavity Surface-Emitting Laser Arrays" Optics Express, vol. 30, no. 15, pp. 26690-26700, Jul. 2022.
[35] S. T. M. Fryslie, M. P. T. Siriani, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz Modulation via Resonance Tuning in Single-Mode Coherent Vertical-Cavity Laser Arrays,” IEEE Photonics Technol. Lett. vol. 27, no. 4, pp. 415–418, Feb. 2015.
[36] X. Gu, M. Nakahama, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “850 nm transverse-coupled-cavity vertical-cavity surface-emitting laser with direct modulation bandwidth of over 30 GHz,” Appl. Phys. Express, vol. 8, no. 8, Jul. 2015, Art. no. 082702.
[37] E. Heidari, H. Dalir, M. Ahmed, V.-J. Sorger, and R.-T. Chen, “Hexagonal transverse-coupled-cavity VCSEL redefining the high-speed lasers,” Nanophotonics, vol. 9, no. 16, pp. 4743–4748, Oct, 2020.
[38] J.-W. Shi, Z. Khan, R.-H. Horng, H.-Y. Yeh, C.-K. Huang, C.-Y. Liu, J.-C. Shih, Y.-H. Chang, J.-L. Yen, and J.-K. Sheu, "High-power and single-mode VCSEL arrays with single-polarized outputs by using package-induced tensile strain," Opt. Lett., vol. 45, no. 17, pp. 4839-4842, Sep. 2020.
[39] D. G. Deppe, and N. Holonyak, Jr., “Atom diffusion and impurity‐induced layer disordering in quantum well III‐V semiconductor heterostructure” J. Appl. Phys., vol. 64, no. 12, pp. R93-R113, Dec. 1988
[40] L.A. Coldren, S.W. Corzine, and Masanovic, “Diode Lasers and Photonic Integrated Circuits” 2nd Edition, Ch. 3 (John Wiley & Sons, Inc.), 2012.
[41] H. A. Haus, “Waves and fields in optoelectronics”. Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1984.
[42] C. -L. Cheng, N. Ledentsov, Z. Khan, J. -L. Yen, N. N. Ledentsov and J. -W. Shi, "Ultrafast Zn-Diffusion and Oxide-Relief 940 nm Vertical-Cavity Surface-Emitting Lasers Under High-Temperature Operation," IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 6, pp. 1-7, Nov.-Dec. 2019, Art no. 1700507.
[43] J. -L. Yen, X. -N. Chen, K. -L. Chi, J. Chen and J. -W. Shi, "850 nm Vertical-Cavity Surface-Emitting Laser Arrays with Enhanced High-Speed Transmission Performance Over a Standard Multimode Fiber," Journal of Lightwave Technology, vol. 35, no. 15, pp. 3242-3249, 1 Aug. 2017.
[44] II-VI Laser Enterprise, http://www.laserenterprise.com/index.html
Product: APS6401010002
[45] J. Nissinen and J. Kostamovaara, "A High Repetition Rate CMOS Driver for High-Energy Sub-ns Laser Pulse Generation in SPAD-Based Time-of-Flight Range Finding," IEEE Sensors Journal, vol. 16, no. 6, pp. 1628-1633, Mar. 2016.
[46] J.M. Osterman, and R. Michalzik, “VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface- Emitting Lasers”. Springer, Berlin (Germany), 2013.
[47] T.R. Raddo, K. Panajotov, B.-H.V. Borges, et al. “Strain induced polarization chaos in a solitary VCSEL” Sci Rep, vol. 7, no. 1, Oct. 2017, Art. no. 14032.
[48] K.D. Choquette, D.A Richie and R.E. Leibenguth, “Temperature dependence of gain guided vertical cavity surface emitting laser polarization”, Appl. Phys. Lett., vol. 64, pp. 2062-2064, Jun. 1998.
[49] K.D. Choquette and R.E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries”, IEEE Photonics Technology Letters., vol. 6, no. 1, pp.40-42, Jan. 1994.
[50] E. Haglund, M. Jahed, and J.S. Gustavsson, “High-power single transverse and polarization mode VCSEL for silicon photonics integration”, Opt. Express., vol. 27, no. 13, pp. 18892-18899, Jun. 2019.
[51] A. N. Al-Omari, and K. L. Lear, “VCSELs with a self-aligned contact and copper-plated heatsink” IEEE Photonics Technology Letters., vol. 17, no. 9, pp. 1767-1769, Aug. 2005.
[52] H. Kazemi, E. Sarbazi, M. D. Soltani, M. Safari and H. Haas, "A Tb/s Indoor Optical Wireless Backhaul System Using VCSEL Arrays," in Proceedings of IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communication, pp. 1-6, 2020.
[53] M. Z. Chowdhury, M. T. Hossan, A. Islam and Y. M. Jang, "A Comparative Survey of Optical Wireless Technologies: Architectures and Applications," IEEE Access, vol. 6, pp. 9819-9840, Jan. 2018.
[54] R.F. Carson, E.W. Taylor, A.H. Paxton, H. Schone, K.D. Choquette, H.Q. Hou, M.E. Warren and K.L. Lear “Surface-emitting laser technology and its application to the space radiation environment” Proc. SPIE, vol. 10288, Jul. 1997, Art. no. 1028806.
[55] P.M. Goorjian, "Free-Space Optical Communication for CubeSats in Low Lunar Orbit (LLO)", Proc. SPIE, vol. 11272, Mar. 2020, Art. no.1127214.
[56] N. Haghighi, P. Moser and J. A. Lott, "Power, Bandwidth, and Efficiency of Single VCSELs and Small VCSEL Arrays," IEEE J. Sel. Top. Quantum Electronics., vol.25, no. 6, Nov./Dec. 2019, Art. no.1700615.
[57] D. M. Kuchta, J. Gamelin, J. D. Walker, J. Lin, K. Y. Lau, and J. S. Smith, “Relative intensity noise of vertical cavity surface emitting lasers,” Appl. Phys. Lett., vol. 62, pp.1194-1196, 1993.
[58] R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable High-CW-Power High-Speed 980-nm VCSEL Arrays,” IEEE J. of Quantum Electronics., vol. 46, no.11, pp.1590-1596, Aug. 2010.
[59] P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of Photon Lifetime on High-Speed VCSEL Performance,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 17, no.6, 1603-1613, Nov./Dec. 2011.
[60] F. Koyama and X. Gu, "Beam Steering, Beam Shaping, and Intensity Modulation Based on VCSEL Photonics," IEEE J. Sel. Top. Quantum Electronics., vol. 19, no.4, Jul./Aug. 2013, Art. no. 1701510.
[61] N. Haghighi, P. Moser, M. Zorn and J. A. Lott, "19-element vertical cavity surface emitting laser arrays with inter-vertical cavity surface emitting laser ridge connectors,” J. Phys. Photonics., vol. 2, no. 4, Oct. 2020, Art. no. 04LT01.
[62] T. Yoshikawa, T. Kawakami, H. Saito, H. Kosaka, M. Kajita, K. Kurihara, Y. Sugimoto, and K. Kasahara, "Polarization-controlled single-mode VCSEL," IEEE Journal of Quantum Electronics., vol. 34, no. 6, pp.1009-1015, Jun. 1998.
[63] D. V. Kuksenkov, H. Temkin, and S. Swirhun, “Polarization instability and relative intensity noise in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett., vol. 67, no. 15, pp. 2141-2143, Aug. 1995.
[64] P.-C. Pan, D. Nag, Z. Khan, C.-J. Chen, J.-W. Shi, A. Laha, and R.-H. Horng, "Effect of Thermal Management on the Performance of VCSELs," IEEE Transactions on Electron Devices., vol. 67, no. 9, pp. 3736-3739, Jul. 2020.
[65] J.-W. Shi, L.-C. Yang, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Ying-Jay Yang, “Minimization of Damping in the Electro optic Frequency Response of High-Speed Zn-Diffusion Single-Mode Vertical-Cavity Surface Emitting Lasers” IEEE Photon. Technol. Lett., vol.19, no.24, pp. 2057-2059, Dec. 2007.
[66] Y.-G. Ju, Y.-H. Lee, H.-K. Shin, and II Kim, “Strong polarization selectivity in 780-nm vertical-cavity surface-emitting lasers grown on misoriented substrates,” Appl. Phys. Lett., vol. 71, no. 6, pp. 741-743, Jun. 1997.
[67] S.-E. Hashemi,“Relative Intensity Noise (RIN) in High-Speed VCSELs for Short Reach Communication,” Master Thesis, Chalmers University of Technology, 2012.
[68] E. Lamothe, L.- D. A. Lundeberg, and E. Kapon, “Eigenmode analysis of phased-coupled VCSEL arrays using spatial coherence measurements,” Opt. Lett., vol. 36, no. 15, pp. 2916–2918, Aug. 2011.
[69] Intelligent Epitaxy Technology, Inc., 1250 E Collins Blvd., Richardson, TX 75081, http://intelliepi.com
[70] H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. H. Bimberg, “Impact of the Quantum Well Gain-to-Cavity Etalon Wavelength Offset on the High Temperature Performance of High Bit Rate 980-nm VCSELs,” IEEE J. Quantum Electron., vol. 50, no. 8, pp. 613–621, Aug. 2014.
[71] R. Safaisini, E. Haglund, P. Westbergh, J.S. Gustavsson, and A. Larsson, “20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL,” Electron. Lett., vol. 50, no. 1, pp. 40–42 Jan. 2014.
[72] K.-L. Chi, Y.-X. Shi, X.-N. Chen, Jason (Jyehong) Chen, Y.-J. Yang, J.-R Kropp, N. Ledentsov Jr, M. Agustin, N.N. Ledentsov, G. Stepniak, J. P. Turkiewicz, and J.-W. Shi, “Single-Mode 850 nm VCSELs for 54 Gbit/sec On-Off Keying Transmission Over 1 km Multi-Mode Fiber,” IEEE Photonics Technol. Lett., vol. 28, no. 12, pp. 1367–1370, Mar. 2016.
[73] M.T. Johnson, D.F. Siriani, M.-P. Tan and K.D. Choquette, “Beam steering via resonance detuning in coherently coupled vertical cavity laser arrays”, App. Phys. Lett., vol. 103, Nov. 2013, Art. no. 201115
[74] L. Bao, N.-H. Kim, L.J. Mawst, N.N. Elkin, V.N. Troshchieva, D.V. Vysotsky and A.P. Napartovich, “Near-diffraction-limited coherent emission from large aperture antiguided vertical-cavity surface-emitting laser arrays”, App. Phys. Letters, vol. 84, no. 3, Jan. 2004
[75] D. F. Siriani and K. D. Choquette, “In-phase, coherent photonic crystal vertical-cavity surface-emitting laser arrays with low divergence,” Electron. Lett., vol. 46, no. 10, pp. 712–714, 2010.
[76] D. F. Siriani and K. D. Choquette, "Electronically Controlled Two-Dimensional Steering of In-Phase Coherently Coupled Vertical-Cavity Laser Arrays," in IEEE Photonics Technology Letters, vol. 23, no. 3, pp. 167-169, Feb.1, 2011.
[77] D. Zhou, A.P. Napartovich, N.N. Elkin, D.V. Vysotsky, L.J. Mawst, “Modal characteristics of 2-D antiguided VCSEL arrays, Proc. SPIE, vol. 4649, Jun. 2002.
[78] N. Haghighi, W. Głowadzka, T. Czyszanowski, M. Zorn and J. A. Lott, "940 nm VCSEL arrays for optical wireless," 2022 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 2022, pp. 1-2, doi: 10.1109/IPC53466.2022.9975628.
[79] J.-F. Seurin, G. Xu, Q. Wang, B. Guo, R.V. Leeuwen, A. Miglo, P. Pradhan, J.D. Wynn, V. Khalfin, C. Ghosh, “High Brightness pump sources using 2D VCSEL arrays”, Proc. SPIE, vol. 7615, Feb. 2010, Art. no. 76150F.
[80] Z. Khan, Y.-H. Chang, T.-L. Pan, Y.-C. Zhao, Y.-Y. Huang, C.-H. Lee, J.-S. Chang, C.-Y. Liu, C.-Y. Lee, C.-Y. Fang, and J.-W. Shi, “High-Brightness, High-Speed, and Low-Noise VCSEL Arrays for Optical Wireless Communication,” IEEE Access, vol. 10, pp. 2303-2317, Dec. 2021.
[81] K. L. Lear, V. M. Hietala, H. Q. Hou, J. Banas, B. E. Hammons, J. Zolper, and S. P. Kilcoyne, "High-Speed 850 nm Oxide-Confined Vertical Cavity Surface Emitting Lasers," OSA Trends in Optics and Photonics Series, Mar. 1997, paper UC2.
[82] A. N. Al-Omari, G. P. Carey, S. Hallstein, J. P. Watson, G. Dang and K. L. Lear, "Low thermal resistance high-speed top-emitting 980-nm VCSELs," IEEE Photonics Technology Letters, vol. 18, no. 11, pp. 1225-1227, June 2006.
[83] https://www.trumpf.com/en_INT/products/vcsel-solutions-photodiodes/integrated-vcsel-solutions/vibo/
[84] M. Fingas, C.E. Brown, “Oil Spill science and technology”, second edition, 2017.
[85] N. Ledentsov Jr., L. Chorchos, O.Y. Makarov, M.B. Sanayeh, J.-R. Kropp, I.E. Titkov, V.A. Shchukin, V.P. Kalosha, J.P. Turkiewicz and N.N. Ledentsov, “Advances in design and application of compact VCSEL arrays from multicore fiber to optical wireless and beyond”, Proc. SPIE, vol. 12020, Mar. 2022, Art. no. 1202008.
|