博碩士論文 110522154 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:113 、訪客IP:18.223.170.223
姓名 王鴻恩(Hung-En Wang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於機器學習的三維地理信息系統天氣預報與可視化
(Forecasting and Visualization of Weather in a 3D Geographical Information System based on Machine Learning)
相關論文
★ 具多重樹狀結構之可靠性群播傳輸★ 在嵌入式行動裝置上設計與開發跨平台Widget
★ 在 ARM 架構之嵌入式系統上實作輕量化的手持多媒體播放裝置圖形使用者介面函式庫★ 基於網路行動裝置所設計可擴展的服務品質感知GStreamer模組
★ 針對行動網路裝置開發可擴展且跨平台之GSM/HSDPA引擎★ 於單晶片多媒體裝置進行有效率之多格式解碼管理
★ IMS客戶端設計與即時通訊模組研發:個人資訊交換模組與即時訊息模組實作★ 在可攜式多媒體裝置上實作人性化的嵌入式小螢幕網頁瀏覽器
★ 以IMS為基礎之及時語音影像通話引擎的實作:使用開放原始碼程式庫★ 電子書嵌入式開發: 客制化下載服務實作, 資料儲存管理設計
★ 於數位機上盒實現有效率訊框參照處理與多媒體詮釋資料感知的播放器設計★ 具數位安全性的電子書開發:有效率的更新模組與資料庫實作
★ 適用於異質無線寬頻系統的新世代IMS客戶端軟體研發★ 在可攜式數位機上盒上設計並實作重配置的圖形使用者介面
★ Friendly GUI design and possibility support for E-book Reader based Android client★ Effective GUI Design and Memory Usage Management for Android-based Services
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 本研究論文提出了一種利用基於注意力感知 Bi-LSTM 的 3D 地理信息系統 (GIS) 將氣象數據集成到天氣預報和可視化中的綜合解決方案。該研究的主要貢獻包括氣象站數據處理,涉及數據標記、清理和特徵工程,以及利用十年每小時觀測數據分析關鍵天氣預報特徵。 對於天氣預報模型訓練,提出了一種基於注意力的感知的 Bi-LSTM。該算法每小時都能提供準確可靠的天氣預報結果,準確率達到83.03%,優於傳統機器學習算法。並且在3D GIS平台的天氣場景設計中,PSNR和SSIM都具有高質量的精度。這些貢獻為氣象相關領域的用戶、研究人員和政策制定者提供了寶貴的工具和資源,同時也啟發了未來的研究和應用。
摘要(英) This research paper presents a comprehensive solution for integrating meteorological data into weather forecasting and visualization using attention-aware Bi-LSTM-based 3D geographic information system (GIS). Key contributions of the research include weather station data processing, involving data labeling, cleaning and feature engineering, and analysis of key weather forecast features using ten-year hourly observation data. For weather forecast model training, an attention-based perception-based Bi-LSTM is proposed. The algorithm can provide accurate and reliable weather forecast results every hour, achieving an accuracy rate of 83.03%, which is superior to traditional machine learning algorithms. And in the weather scene design of the 3D GIS platform, both PSNR and SSIM have high-quality accuracy. These contributions provide valuable tools and resources to users, researchers, and policymakers in meteorological-related fields, while also inspiring future research and applications.
關鍵字(中) ★ 循環神經網絡
★ 雙向長短期記憶
★ 可視化
★ 天氣預報
★ 分類
★ 數據分析
關鍵字(英) ★ Recurrent Neural Network(RNN)
★ Bi-directional Long Short-Term Memory(Bi-LSTM)
★ Visualization
★ Weather Forecasting
★ Classification
★ Data Analysis
論文目次 中文摘要 vi
英文摘要 vii
誌謝 viii
目錄 ix
圖目錄 x
表目錄 xi
符號說明 xii
一、 緒論 1
二、 相關文獻 4
三、 研究內容與方法 10
3-1 Label the weather data 11
3-2 Data Oversampling 13
3-3 Feature Selection 14
3-4 Multi-class Classification Methodology 16
3-5 Model Evaluation Metrics 19
3-6 Weather visualization scene design in 3D GIS system 20
3-7 Visualization quality assessment 22
四、實驗結果 24
4-1 Multi-class Classification and forecasting 24
4-2 Weather visualization scene 27
五、 討論 30
六、 結論與未來展望 32
參考文獻       33
參考文獻 [1] H. Thieblemont, F. Haghighat, R. Ooka, and A. Moreau, “Predictive control strategies based on weather forecast in buildings with energy storage system: A review of the state-of-the art,” Energy and Buildings, vol. 153, pp. 485–500, 2017.
[2] M. D. . R. Meyer, E. . Snow, C. . Choate, and A., Impacts of Extreme Weather on Transportation: National Symposium Summary; ICF International: Roston, VA, USA, 2013.
[3] M. Chen, Y. Cui, X. Wang, H. Xie, F. Liu, T. Luo et al., “A reinforcement learning approach to irrigation decision-making for rice using weather forecasts,” Agricultural Water Management, vol. 250, p. 106838, 2021.
[4] D. Yu and Z. He, Digital twin-driven intelligence disaster prevention and mitigation for infrastructure: advances, challenges, and opportunities. //doi.org/10.1007/s11069-021-05190-x DO - 10, 2022.
[5] A. Braziene, J. Venclovien˙ e, V. Vai˙ ciulis, D. Lukˇ sienˇ e, A. Tamo˙ siˇ unas,ˆ I. Milvidaite˙ et al., “Relationship between depressive symptoms and weather conditions,” International journal of environmental research and public health, vol. 19, no. 9, p. 5069, 2022.
[6] S. M. Bhagavathi, A. Thavasimuthu, A. Murugesan, C. P. L. G. Rajendran, L. Raja, and R. Thavasimuthu, “Weather forecasting and prediction using hybrid c5. 0 machine learning algorithm,” International Journal of Communication Systems, vol. 34, no. 10, p. e4805, 2021.
[7] Y. Y, S. S, and G. R, A study of approaches to hypertext categorization.
J Intell Inf Syst 18(2):219–241, 2002.
[8] J. SF, Structural health monitoring—intelligent information processing and apllication, 2009.
[9] R. Mantri, K. R. Raghavendra, H. Puri, J. Chaudhary, and K. Bingi, “Weather Prediction and Classification Using Neural Networks and k-Nearest Neighbors,” 2021 8th International Conference on Smart Computing and Communications (ICSCC), Kochi, Kerala, India, vol. 10., pp. 263–268, 2021.
[10] E. Dritsas, M. Trigka, and P. Mylonas, “A multi-class classification approach for weather forecasting with machine learning techniques,” in 2022 17th International Workshop on Semantic and Social Media Adaptation & Personalization (SMAP), 2022, pp. 1–5.
[11] I. oshodi, “Machine learning-based algorithms for weather forecasting,” Preprints.org 2022, 2022060428. https://doi.org/10.20944/preprints202206.0428.v1, 2022.
[12] N. Singh, S. Chaturvedi, and S. Akhter, “Weather forecasting using machine learning algorithm,” International Conference on Signal Processing and Communication (ICSC), NOIDA, India, vol. 10., pp. 171– 174, 2019.
[13] M. Holmstrom, D. Liu, and C. Vo, Machine learning applied to weather forecasting. Meteorol, 2016.
[14] L. C. Jain and L. R. Medsker, “Recurrent neural networks: Design and applications,” 1999.
[15] R. K. Agrawal, F. Muchahary, and M. M. Tripathi, “Long term load forecasting with hourly predictions based on long-short-term-memory networks,” in 2018 IEEE Texas Power and Energy Conference (TPEC), 2018, pp. 1–6.
[16] Z. Karevan and J. A. Suykens, “Transductive lstm for timeseries prediction: An application to weather forecasting,” Neural Networks, vol. 125, pp. 1–9, 2020. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S0893608020300010
[17] N. Balaji, S. B. Bhandary, R. F. Dsouza, and B. Karthik Pai, “Ann based weather analysis and prediction,” in 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics ( DISCOVER), 2022, pp. 7–11.
[18] Q. Fu, D. Niu, Z. Zang, J. Huang, and L. Diao, “Multi-stations’ weather prediction based on hybrid model using 1d cnn and bi-lstm,” in 2019 Chinese Control Conference (CCC), 2019, pp. 3771–3775.
[19] U. Sharma and C. Sharma, “Deep learning based prediction of weather using hybrid stacked bi-long short term memory,” in 2022 12th International Conference on Cloud Computing Data Science & Engineering, 2022, pp. 422–427.
[20] I.-H. Hsu, X.-W. Zhang, and F.-M. Shyu, “An application for geovisualization with virtual reality built on unity3d,” in 2018 IEEE International
Conference on Applied System Invention (ICASI), 2018, pp. 1082–1085.
[21] A. A. Alesheikh, H. Helali, and H. Behroz, Web GIS: technologies and its applications. Symposium on geospatial theory processing and applications, 2002.
[22] W. Yin et al., “An integrated design for geospatial analysis based on WebGIS,” IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), vol. 10., pp. 1890–1894, 2019.
[23] L.-H. Chen, H.-M. Hung, C.-Y. Sun, E. H.-K. Wu, and Y. Takama,
“Canavi: Synthesizing cartoon-like animation for street navigation based on google maps,” IEEE Intelligent Transportation Systems Magazine, vol. 13, no. 4, pp. 227–238, 2021.
[24] S. V. Broucke and N. Deligiannis, “Visualization of real-time heterogeneous smart city data using virtual reality,” IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, vol. 10., pp. 685–690, 2019.
[25] X. Li et al., “Traffic management and forecasting system based on 3d GIS,” 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Shenzhen, China, vol. 10., pp. 991–998, 2015.
[26] M. E. Presa Reyes and S.-C. Chen, “A 3d virtual environment for storm surge flooding animation,” in 2017 IEEE Third International Conference on Multimedia Big Data (BigMM), 2017, pp. 244–245.
[27] C. Wang, J. Hou, D. Miller, I. Brown, and Y. Jiang, “Flood risk management in sponge cities: The role of integrated simulation and 3D visualization,” International Journal of Disaster Risk Reduction, vol. 39, p. 101139., 2019.
[28] S. Yun, C. Chen, J. Li, and L. Tang, “Wildfire spread simulation and visualization in virtual environments,” Proceedings 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, Fuzhou, China, vol. 10., pp. 315–319, 2011.
[29] L. Gao, Y. Song, and B. Zhao, “(2021),” 3D Visualization Monitoring and Early Warning of Surface Deformation in Subsidence Area Based on GIS. Complexity, 2021, p. 6675241., 2021.
[30] L. Yin and N. Shiode, “3d spatial-temporal GIS modeling of urban environments to support design and planning processes,” Journal of Urbanism: International Research on Placemaking and Urban Sustainability, vol. 7, no. 2, 2013.
[31] S. Zlatanova, A. Rahman, Rahman, and M. Pilouk, (2011). 3D GIS: Current status and perspectives, 2002.
[32] L. Yin, “Street level urban design qualities for walkability: Combining 2D and 3D GIS measures,” Computers, Environment and Urban Systems, vol. 64, 2017.
[33] R. C. Mat, A. R. M. Shariff, A. N. Zulkifli, M. S. M. Rahim, and M. H. Mahayudin, “Using game engine for 3D terrain visualisation of GIS data: A review,” IOP Conference Series: Earth and Environmental Science, vol. 20, no. 1, pp. 1088/1755–1315/20/1/012037, 2014.
[34] C. Lu, D. Lin, J. Jia, and C.-K. Tang, “Two-class weather classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2510–2524, 2017.
[35] Z. Li, Y. Li, J. Zhong, and Y. Chen, “Multi-class weather classification based on multi-feature weighted fusion method,” IOP Conference Series: Earth and Environmental Science, vol. 558, no. 4, p. 042038, aug 2020.
[Online]. Available: https://dx.doi.org/10.1088/1755-1315/558/4/042038
[36] X. Zhao and C. Wu, “Weather classification based on convolutional neural networks,” 2021 International Conference on Wireless Communications and Smart Grid (ICWCSG), Hangzhou, China, vol. 10., pp. 293–296, 2021.
[37] C. Bai, D. Zhao, M. Zhang, and J. Zhang, “Multimodal information fusion for weather systems and clouds identification from satellite images,” in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. doi: 10, 2022, vol. 15, pp. 7333–7345.
[38] S. Liu, L. Duan, Z. Zhang, and X. Cao, “Hierarchical multimodal fusion for ground-based cloud classification in weather station networks,” in IEEE Access. doi: 10, 2019, vol. 7, pp. 85688–85695.
[39] S. Liu and M. Li, “Deep multimodal fusion for ground-based cloud classification in weather station networks,” EURASIP J. Wireless Commun. Netw., vol. 2018, no, vol. 2018, no. 1, p. 48, 2018.
[40] B. T. Pham et al., “A comparative study of least square support vector machines and multiclass alternating decision trees for spatial prediction of rainfall-induced landslides in a tropical cyclones area,” Geotechnical and Geological Engineering, vol. 34, no. 6, pp. 1807–1824, 2016.
[41] A. Zaytar and C. E. Amrani, “Sequence to sequence weather forecasting with long short-term memory recurrent neural networks,” International Journal of Computer Applications, vol. 143, pp. 7–11, 2016.
[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc., 2017, p. 6000–6010.
[43] M. A. R. Suleman and S. Shridevi, “Short-term weather forecasting using spatial feature attention based lstm model,” IEEE Access, vol. 10, pp. 82456–82468, 2022.
[44] Q. Li, Y. Zhu, W. Shangguan, X. Wang, L. Li, and F. Yu, “An attention-aware lstm model for soil moisture and soil temperature prediction,” Geoderma, vol. 409, p. 115651, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S001670612100731X
[45] A. Pandey, C. Agrawal, and M. Agrawal, A hadoop based weather prediction model for classification of weather data. second international conference on electrical computer and communication technologies (ICECCT), 2017.
[46] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. Knowl. Data Eng., vol. 21, no, vol. 21, no. 9, pp. 1263–1284, Sep. 2009.
[47] P. Branco, L. Torgo, and R. P. Ribeiro, “A survey of predictive modeling on imbalanced domains,” ACM Comput. Surv., vol. 49, no, vol. 49, no. 2, pp. 31:1–31:50, 2016.
[48] R. Mohammed, J. Rawashdeh, and M. Abdullah, Machine learning with oversampling and undersampling techniques: overview study and experimental results. 2020 11th international conference on information and communication systems (ICICS), 2020.
[49] G. Cohen, M. Hilario, H. Sax, S. Hugonnet, and A. Geissbuhler, “Learning from imbalanced data in surveillance of nosocomial infection,” Artificial Intelligence in Medicine, vol. 37, no. 1, pp. 7–18, 2006, intelligent Data Analysis in Medicine. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0933365705000850
[50] X.-w. Chen and M. Wasikowski, “Fast: A roc-based feature selection metric for small samples and imbalanced data classification problems,” in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’08. New York, NY, USA: Association for Computing Machinery, 2008, p. 124–132. [Online]. Available: https://doi.org/10.1145/1401890.1401910
[51] E. Gravanis, E. Akylas, and G. Livadiotis, “Physical meaning of temperature in superstatistics,” EPL (Europhysics Letters), vol. 130, no. 3, p. 30005, 2020.
[52] D. Windhorst, T. Waltz, E. Timbe, H. G. Frede, and L. Breuer, “: Impact of elevation and weather patterns on the isotopic composition of precipitation in a tropical montane rainforest,” Hydrol. Earth Syst. Sci., vol. 17, 2013.
[53] E. O. Elemo, E. A. Ogobor, B. G. Ayantunji, O. E. Mangete, G. A. Alagbe, M. L. Abdulkareem, A. E. Obarolo, and B. O. Onuh, “(2021) Relationship between Relative Humidity and the Dew Point Temperature in Abuja,” Nigeria. Open Access Library Journal, vol. 8, pp. 1–13, 2021.
[54] I. Simeonov, H. Kilifarev, and R. Ilarionov, “2007,” Algorithmic realization of system for short-term weather forecasting. In Proceedings of the 2007 international conference on Computer systems and technologies (CompSysTech ’07). Association for Computing Machinery, New York, NY, USA, Article, vol. 6, 2007.
[55] L. Wilson, M. J. Manton, and S. T. Siems, “Relationship between rainfall and weather regimes in south-eastern Queensland,” Australia. Int. J. Climatol., vol. 33, pp. 979–991, 2013.
[56] I. Sarkar, B. Pal, A. Datta, and S. Roy, “(2020),” Wi-Fi-Based Portable Weather Station for Monitoring Temperature, Relative Humidity, Pressure, Precipitation, Wind Speed, and Direction. In: Tuba, M., Akashe, S., Joshi, A. (eds) Information and Communication Technology for Sustainable Development. Advances in Intelligent Systems and Computing, vol, vol. 933., 2022.
[57] Z. Wang, J. Chen, and S. C. H. Hoi, “Deep learning for image superresolution: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 10, pp. 3365–3387, 2021.
[58] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.
指導教授 吳曉光(Hsiao-kuang Wu) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明