博碩士論文 110453022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:13.58.77.244
姓名 林聖富(Sheng-Fu Lin)  查詢紙本館藏   畢業系所 資訊管理學系在職專班
論文名稱 基於二階段分類器之惡意流量偵測
(Two-stage Classifier For Malicious Traffic Detection)
相關論文
★ 應用數位版權管理機制於數位影音光碟內容保護之研究★ 以應用程式虛擬化技術達成企業軟體版權管理之研究
★ 以IAX2為基礎之網頁電話架構設計★ 應用機器學習技術協助警察偵辦詐騙案件之研究
★ 擴充防止詐欺及保護隱私功能之帳戶式票務系統研究-以大眾運輸為例★ 網際網路半結構化資料之蒐集與整合研究
★ 電子商務環境下網路購物幫手之研究★ 網路安全縱深防護機制之研究
★ 國家寬頻實驗網路上資源預先保留與資源衝突之研究★ 以樹狀關聯式架構偵測電子郵件病毒之研究
★ 考量地區差異性之隨選視訊系統影片配置研究★ 不信任區域網路中數位證據保留之研究
★ 入侵偵測系統事件說明暨自動增加偵測規則之整合性輔助系統研發★ 利用程序追蹤方法關聯分散式入侵偵測系統之入侵警示研究
★ 一種網頁資訊擷取程式之自動化產生技術研發★ 應用XML/XACML於工作流程管理系統之授權管制研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著物聯網(Internet of Things, IoT)的迅速發展,我們面臨著越來越多的資訊安全威脅。為有效對抗這些威脅,機器學習已被廣泛應用於網路入侵偵測(Network Intrusion Detection, NIDS)。然而,面對這些龐大的入侵偵測數據,經常出現資料不平衡和特徵冗餘的問題,導致分類器在訓練過程中易於過度擬合,進而影響模型的效能與準確率。本研究提出了一種新穎的二階段分類器模型,可偵測二元和多元分類,該模型糅合了機器學習和集成學習的方法,並結合特徵選擇和資料平衡方法,以應對大規模網路流量。在第一階段,本研究比較六種機器學習方法的準確率和時間效率,最終選擇了決策樹(Decision Tree)作為分類器來識別正常和攻擊數據。在第二階段,本研究對第一階段預測為攻擊的數據進行攻擊類別的分類,利用資訊獲利(Information Gain)來選擇重要的特徵,並比較了三種集成學習方法和兩種資料平衡方法,實驗顯示,極限隨機樹(Extra Trees)和ADASYN+TomekLinks方法具高模型效能及時間效率,並優於SMOTE平衡方法。本研究在CIC-IDS2017和UNSW-NB15兩種不同的資料集上驗證了二階段分類器模型具有卓越的偵測效能,F1-Score分別可達到99.65%和79.70%,總訓練時間分別為171.47秒和11.95秒,相較於其他研究,本研究的模型在效能和時間效率表現更為出色。
摘要(英) As the Internet of Things(IoT) developes rapidly, people are facing the increasing number information security threats. As a result, machine learning has been widely applied in detecting network intrusion to effectively combat these threats. However, while facing this massive data for intrusion detection the problem such as data imbalance and feature redundancy has been provoked as the same time.These issues cause classifiers to overfit during the training process, subsequently affecting the efficiency and accuracy of the model. This study proposes a novel two-stage classifier model capable of detecting binary and multi-category classifications. The model incorporates both machine learning and ensemble learning methods, combined with feature selection and data balancing techniques, to address large-scale network traffic. In the first stage, we compared the accuracy and time efficiency of six machine learning methods, ultimately selecting the Decision Tree as the classifier to distinguish between normal and attack data. In the second stage, the data predicted as attacks in the first stage are classified into attack categories. Information Gain is used to select significant features, and three ensemble learning methods and two data balancing methods are compared. Experimental results indicate that the Extra Trees and ADASYN+TomekLinks methods provide high model efficiency and time efficiency, outperforming the SMOTE balancing method. This study validates the excellent detection efficiency of the two-stage classifier model on two different datasets, CIC-IDS2017 and UNSW-NB15, with F1-Scores reaching 99.65% and 79.70% respectively. The total training time is 171.47 seconds and 11.95 seconds, respectively. Compared to other research, the model in this study exhibits superior performance in both efficiency and time efficiency.
關鍵字(中) ★ 網路入侵偵測
★ 資訊獲利
★ 極限隨機樹
★ ADASYN
★ TomekLinks
關鍵字(英) ★ NIDS
★ Information Gain
★ Extra Trees
★ ADASYN
★ TomekLinks
論文目次 論文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
附表目錄 ix
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究貢獻 4
1-4 章節架構 5
第二章 文獻探討 6
2-1 入侵偵測系統 6
2-1-1 數據源 7
2-1-2 數據分析 7
2-1-3 響應 8
2-1-4 IDS架構 8
2-2 入侵偵測系統公開資料集 9
2-2-1 UNSW-NB15資料集 9
2-2-2 CIC-IDS2017資料集 10
2-2-3 入侵偵測系統公開資料集比較 10
2-3 相關研究 10
2-3-1 傳統機器學習應用於入侵偵測系統 10
2-3-2 深度學習應用於入侵偵測系統 11
2-3-3 小結 14
第三章 研究方法 16
3-1 系統架構 16
3-2 第一階段模型 17
3-2-1 資料前處理 17
3-2-2 決策樹 18
3-2-3 羅吉斯迴歸 19
3-2-4 線性判別分析 19
3-2-5 貝氏分類器 19
3-2-6 二次判別分析 20
3-2-7 支援向量機 20
3-3 第二階段模型 20
3-3-1 Information Gain 21
3-3-2 資料不平衡 22
3-3-3 SMOTE 23
3-3-4 ADASYN 24
3-3-5 TomekLinks 26
3-3-6 ADASYN+TomekLinks 26
3-3-7 隨機森林 26
3-3-8 極限隨機樹 27
3-3-9 極限梯度提升 27
3-4 評估指標 27
3-4-1 混淆矩陣 28
3-4-2 Area Under Curve 29
3-4-3 訓練時間 29
3-5 機器學習模型參數 29
第四章 實驗結果 31
4-1 實驗環境 31
4-2 資料集 31
4-2-1 CIC-IDS2017 32
4-2-2 UNSW-NB15 35
4-3 Information Gain特徵排名 37
4-4 實驗結果 40
4-4-1 CIC-IDS2017第一階段模型 40
4-4-2 UNSW-NB15第一階段模型 41
4-4-3 CIC-IDS2017第二階段模型 42
4-4-4 UNSW-NB15第二階段模型 54
4-4-5 實驗結果討論 64
第五章 結論與未來研究 66
5-1 結論與貢獻 66
5-2 研究限制與未來研究 68
參考文獻 69
附錄一、第一階段分類器各類別效能指標 74
附錄二、第二階段分類器各類別效能指標 75
參考文獻 [1]Z. K. A. Mohammed and E. S. A. Ahmed, “Internet of Things Applications, Challenges and Related Future Technologies,” 2017.
[2]R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future Internet: The Internet of Things Architecture, Possible Applications and Key Challenges,” in 2012 10th International Conference on Frontiers of Information Technology, Islamabad, Pakistan: IEEE, Dec. 2012, pp. 257–260.
[3]N. M. Karie, N. M. Sahri, and P. Haskell-Dowland, “IoT Threat Detection Advances, Challenges and Future Directions,” in 2020 Workshop on Emerging Technologies for Security in IoT (ETSecIoT), Sydney, Australia: IEEE, Apr. 2020, pp. 22–29.
[4]TRANSFORMAINSIGHTS, “Global IoT connections to hit 29.4 billion in 2030.” Available: https://transformainsights.com/global-iot-connections-294
[5]Check Point, “Check Point Research Reports a 38% Increase in 2022 Global Cyberattacks.” Available:https://blog.checkpoint.com/2023/01/05/38-increase-in-2022-global-cyberattacks/
[6]DARKTRACE, “Generative AI Business Email Compromises and Novel Social Engineering Attacks.” Available: https://darktrace.com/news/darktrace-email-defends-organizations-against-evolving-cyber-threat-landscape
[7]B. Subba, S. Biswas, and S. Karmakar, “Intrusion Detection Systems using Linear Discriminant Analysis and Logistic Regression,” in 2015 Annual IEEE India Conference (INDICON), New Delhi, India: IEEE, Dec. 2015, pp. 1–6.
[8]V. M. Deolindo et al., “Using Quadratic Discriminant Analysis by Intrusion Detection Systems for Port Scan and Slowloris Attack Classification,” in Computational Science and Its Applications – ICCSA 2021, O. Gervasi, B. Murgante, S. Misra, C. Garau, I. Blečić, D. Taniar, B. O. Apduhan, A. M. A. C. Rocha, E. Tarantino, and C. M. Torre, Eds., Cham: Springer International Publishing, 2021, pp. 188–200.
[9]B. Naveen, J. K. Grandhi, K. Lasya, E. M. Reddy, N. Srinivasu, and S. Bulla, “Intrusion Detection System (IDS) using Machine Learning Algorithms against Network Attacks,” vol. 71, no. 4, 2022.
[10]Y. Hua, “An Efficient Traffic Classification Scheme Using Embedded Feature Selection and LightGBM,” in 2020 Information Communication Technologies Conference (ICTC), Nanjing, China: IEEE, May 2020, pp. 125–130.
[11]J. Thaker, N. K. Jadav, S. Tanwar, P. Bhattacharya, and H. Shahinzadeh, “Ensemble Learning-based Intrusion Detection System for Autonomous Vehicle,” in 2022 Sixth International Conference on Smart Cities, Internet of Things and Applications (SCIoT), Mashhad, Iran, Islamic Republic of: IEEE, Sep. 2022, pp. 1–6.
[12]L. Ashiku and C. Dagli, “Network Intrusion Detection System using Deep Learning,” Procedia Computer Science, vol. 185, pp. 239–247, 2021.
[13]H. Kaur, H. S. Pannu, and A. K. Malhi, “A Systematic Review on Imbalanced Data Challenges in Machine Learning: Applications and Solutions,” ACM Computing Surveys, vol. 52, no. 4, pp. 1–36, Jul. 2020.
[14]S. Balakrishnan, V. K, and K. A, “Intrusion Detection System Using Feature Selection and Classification Technique,” International Journal of Computer Science and Application, vol. 3, no. 4, p. 145, 2014.
[15]H. Zhang, B. Zhang, L. Huang, Z. Zhang, and H. Huang, “An Efficient Two-Stage Network Intrusion Detection System in the Internet of Things,” Information, vol. 14, no. 2, p. 77, Jan. 2023.
[16]F. A. Khan, A. Gumaei, A. Derhab, and A. Hussain, “TSDL: A Two-Stage Deep Learning Model for Efficient Network Intrusion Detection,” IEEE Access, vol. 7, pp. 30373–30385, 2019.
[17]A. Jahan and M. A. Alam, “Intrusion Detection Systems based on Artificial Intelligence,” International Journal of Advanced Research in Computer Science, 2017.
[18]A. Pal Singh and M. Deep Singh, “Analysis of Host-Based and Network-Based Intrusion Detection System,” IJCNIS, vol. 6, no. 8, pp. 41–47, Jul. 2014.
[19]O. Depren, M. Topallar, E. Anarim, and M. K. Ciliz, “An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks,” Expert Systems with Applications, vol. 29, no. 4, pp. 713–722, Nov. 2005.
[20]dummies, “Examining Different Types of Intrusion Detection Systems.” Available: https://www.dummies.com/article/home-auto-hobbies/home-improvement-appliances/safety-security/examining-different-types-of-intrusion-detection-systems-200408/
[21]V. Kumar, Ed., Managing cyber threats: issues, approaches, and challenges. in Massive computing, no. 5. New York, NY: Springer, 2005.
[22]N. Moustafa and J. Slay, “The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set,” Information Security Journal: A Global Perspective, vol. 25, no. 1–3, pp. 18–31, Apr. 2016.
[23]Canadian Institute for Cybersecurity, “CIC-IDS 2017 Datasets.” Available: https://www.unb.ca/cic/datasets/ids-2017.html
[24]Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. Bin Idris, A. M. Bamhdi, and R. Budiarto, “CICIDS-2017 Dataset Feature Analysis With Information Gain for Anomaly Detection,” IEEE Access, vol. 8, pp. 132911–132921, 2020.
[25]E. Osa and O. E. Oghenevbaire, “Comparative Analysis of Machine Learning Models in Computer Network Intrusion Detection,” Lagos, Nigeria: IEEE, Apr. 2022, pp. 1–5.
[26]M. A. Almaiah et al., “Performance Investigation of Principal Component Analysis for Intrusion Detection System Using Different Support Vector Machine Kernels,” Electronics, vol. 11, no. 21, p. 3571, Nov. 2022.
[27]A. A. Abdulrahman and M. K. Ibrahem, “Toward Constructing a Balanced Intrusion Detection Dataset Based on CICIDS2017”.
[28]Q. Tian, D. Han, K.-C. Li, X. Liu, L. Duan, and A. Castiglione, “An intrusion detection approach based on improved deep belief network,” Applied Intelligence, vol. 50, no. 10, pp. 3162–3178, Oct. 2020.
[29]F. Jiang et al., “Deep Learning Based Multi-Channel Intelligent Attack Detection for Data Security,” IEEE Transactions on Sustainable Computing, vol. 5, no. 2, pp. 204–212, Apr. 2020.
[30]B. Cao, C. Li, Y. Song, Y. Qin, and C. Chen, “Network Intrusion Detection Model Based on CNN and GRU,” Applied Sciences, vol. 12, no. 9, p. 4184, Apr. 2022.
[31]L.-H. Li, R. Ahmad, W.-C. Tsai, and A. K. Sharma, “A Feature Selection Based DNN for Intrusion Detection System,” in 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM), IEEE, Jan. 2021, pp. 1–8.
[32]Department of Computer Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey et al., “Multiple Classification of Cyber Attacks Using Machine Learning,” Electrica, vol. 22, no. 2, pp. 313–320, Jun. 2022.
[33]M. Ahmed Siddiqi and W. Pak, “An Optimized and Hybrid Framework for Image Processing Based Network Intrusion Detection System,” Computers, Materials & Continua, vol. 73, no. 2, pp. 3921–3949, 2022.
[34]Y. Sun et al., “Borderline SMOTE Algorithm and Feature Selection-Based Network Anomalies Detection Strategy,” Energies, vol. 15, no. 13, p. 4751, Jun. 2022.
[35]T. A. Alhaj, M. M. Siraj, A. Zainal, H. T. Elshoush, and F. Elhaj, “Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation,” PLOS ONE, vol. 11, no. 11, p. e0166017, Nov. 2016.
[36]Y. Wu, Y. Ding, and J. Feng, “SMOTE-Boost-based sparse Bayesian model for flood prediction,” J Wireless Com Network, vol. 2020, no. 1, p. 78, Dec. 2020.
[37]H. Kaur, H. S. Pannu, and A. K. Malhi, “A Systematic Review on Imbalanced Data Challenges in Machine Learning: Applications and Solutions,” ACM Computing Surveys, vol. 52, no. 4, pp. 1–36, Jul. 2020.
[38]N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” jair, vol. 16, pp. 321–357, Jun. 2002.
[39]Z. Chen, L. Zhou, and W. Yu, “ADASYN−Random Forest Based Intrusion Detection Model,” in 2021 4th International Conference on Signal Processing and Machine Learning, Beijing China: ACM, Aug. 2021, pp. 152–159.
[40]A. Abdelkhalek and M. Mashaly, “Addressing the class imbalance problem in network intrusion detection systems using data resampling and deep learning,” J Supercomput, vol. 79, no. 10, pp. 10611–10644, Jul. 2023.
[41]G. Sah, S. Singh, and S. Banerjee, “Intrusion Detection System Using Classification Algorithms with Feature Selection Mechanism over Real-time Data Traffic,” Jul. 2022.
[42]R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and A. Abuzneid, “Features Dimensionality Reduction Approaches for Machine Learning Based Network Intrusion Detection,” Electronics, vol. 8, no. 3, p. 322, Mar. 2019.
[43]A. Rosay, E. Cheval, F. Carlier, and P. Leroux, “Network Intrusion Detection: A Comprehensive Analysis of CIC-IDS2017:,” 2022, pp. 25–36.
[44]M. M. Rashid, J. Kamruzzaman, M. M. Hassan, T. Imam, and S. Gordon, “Cyberattacks Detection in IoT-Based Smart City Applications Using Machine Learning Techniques,” IJERPH, vol. 17, no. 24, p. 9347, Dec. 2020.
[45]X. Liu, T. Li, R. Zhang, D. Wu, Y. Liu, and Z. Yang, “A GAN and Feature Selection-Based Oversampling Technique for Intrusion Detection,” Security and Communication Networks, vol. 2021, pp. 1–15, Jul. 2021.
[46]S. M. Kasongo and Y. Sun, “Performance Analysis of Intrusion Detection Systems Using a Feature Selection Method on the UNSW-NB15 Dataset,” J Big Data, vol. 7, no. 1, p. 105, Dec. 2020.
[47]R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep Learning Approach for Intelligent Intrusion Detection System,” IEEE Access, vol. 7, pp. 41525–41550, 2019.
[48]T.-C. Vuong, H. Tran, M. X. Trang, V.-D. Ngo, and T. V. Luong, “A Comparison of Feature Selection and Feature Extraction in Network Intrusion Detection Systems,” in 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Chiang Mai, Thailand: IEEE, Nov. 2022, pp. 1798–1804.
指導教授 陳奕明(Yi-Ming Chen) 審核日期 2023-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明