參考文獻 |
[1] T. D. Moore, D. Vanderstraeten, and P. M. Forssell. “Three-dimensional X-ray laminography as a tool for detection and characterization of BGA package defects,” IEEE Tran. on Components and Packaging Technologies, vol.25, no.4, pp.224-229, 2002.
[2] M. S. Laghari and Q. A. Memon. “Identification of faulty BGA solder joints in X-ray images,” Int. Journal of Future Computer and Communication, vol.4, no.2, pp.122-125, 2015.
[3] Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural networks,” in Proc. of Neural Information Processing Systems (NIPS), Lake Tahoe, NV, Dec.3-8, 2012, pp.1106-1114.
[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” arXiv:1512.03385v1.
[5] R. Wightman, “PyToch image models,” https://github.com/rwightman/pytorch-image-models.
[6] R. Wightman, H. Touvron, and H. Jégou, “Resnet strikes back: An improved training procedure in timm,” arXiv:2110.00476v1.
[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li, “ImageNet: a large-scale hierarchical image database,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Miami, FL, Jun.20-25, 2009, pp.248-255.
[8] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the impact of residual connections on learning,” arXiv:1602.07261v2.
[9] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching for MobileNetV3,” arXiv:1905.02244v5.
[10] M. Tan and Q. V. Le, “EfficientNet: rethinking model scaling for convolutional neural networks,” arXiv:1905.11946v5.
[11] A. Brock, S. De, and S. L. Smith, “Characterizing signal propagation to close the performance gap in unnormalized ResNets,” arXiv:2101.08692v2.
[12] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” arXiv:1501.00092v3.
[13] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution convolutional neural network,” arXiv:1608.00367v1.
[14] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert and Z. Wang, “Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network,” arXiv:1609.05158.
[15] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual networks for single image super-resolution,” arXiv:1707.02921.
[16] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep Laplacian pyramid networks for fast and accurate super-resolution,” arXiv:1704.03915.
[17] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep convolutional networks,” arXiv:1511.04587.
[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” arXiv:1311.2524v5.
[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks,” arXiv:1506.01497v3.
[20] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” arXiv:1612.03144.
[21] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: optimal speed and accuracy of object detection,” arXiv:2004.10934v1.
[22] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” arXiv:1411.4038v2.
[23] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: a deep convolutional encoder-decoder architecture for image segmentation,” arXiv:1511.00561v3.
[24] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” arXiv:1505.04597v1.
[25] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: redesigning skip connections to exploit multiscale features in image segmentation,” arXiv:1912.05074v2.
[26] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” arXiv:1703.06870.
[27] D. Maturana and S. Scherer, “VoxNet: a 3D convolutional neural network for real-time object recognition,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Sep.28-Oct.3, 2015, pp.922-928.
[28] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal features with 3D convolutional networks,” arXiv.1412.0767.
[29] H. Zunair, A. Rahman, N. Mohammed, and J. P. Cohen, “Uniformizing techniques to process CT scans with 3D CNNs for tuberculosis prediction,” arXiv:2007.13224.
[30] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional networks for biomedical image segmentation,” arXiv:1505.04597.
[31] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: fully convolutional neural networks for volumetric medical image segmentation,” arXiv:1606.04797.
[32] A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, and D. Xu, “UNETR: transformers for 3D medical image segmentation,” arXiv:2103.10504.
[33] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit and N. Houlsby, “An image is worth 16x16 words: transformers for image recognition at scale,” arXiv:2010.11929.
[34] Q. Zhang, M. Zhang, C. Gamanayake, C. Yuen, Z. Geng and H. Jayasekaraand, “Deep learning based defect detection for solder joints on industrial x-ray circuit board images,” arXiv:2008.02604.
[35] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: visual explanations from deep networks via gradient-based localization,” arXiv:1610.02391.
[36] A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-CAM++: improved visual explanations for deep convolutional networks,” arXiv:1710.11063.
[37] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation networks,” arXiv:1709.01507v4.
[38] A. F. Agarap, “Deep learning using rectified linear units (ReLU),” arXiv:1803.08375.
[39] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q.-V. Le, and H. Adam, “Searching for MobileNetV3,” arXiv:1905.02244.
[40] J. Li, J. Wang, Q. Tian, W. Gao, and S. Zhang, “Global-local temporal representations for video person re-identification,” arXiv:1908.10049.
[41] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention network for scene segmentation,” arXiv:1809.02983v4.
[42] S. Woo, J. Park, J.-Y. Lee, and I. Kweon, “CBAM: convolutional block attention module,” arXiv:1807.06521v2. |